• 제목/요약/키워드: SDOF

검색결과 227건 처리시간 0.02초

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계 (Performance Based Design of Friction Dampers for Seismically Excited Structures)

  • 민경원;김형섭
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.17-24
    • /
    • 2003
  • 이 논문의 주된 목적은 지진을 받는 구조물의 비탄성 거동을 제어하기 위해 Coulomb 마찰감쇠기의 제어성능을 산출하는 것이다. 능력스펙트럼법을 이용하여 다양한 건물의 내진성능이 평가되나, 만약 평가된 성능수준이 목표수준에 미치지 못할 때는 추가적인 감쇠비를 산출하게 된다. 추가적인 감쇠비를 얻기 위한 마찰감쇠기의 리더 마찰력은 등가 점성 감쇠의 개념을 사용하여 산정된다. 이와 같이 제안된 방법의 효과를 증명하기 위해, 다양한 주기와 항복 후 강성비를 가진 단자유도 구조물들에 대하여 수치해석을 수행하였다.

Seismic performance evaluation of school buildings in Turkey

  • Inel, Mehmet;Ozmen, Hayri Baytan;Bilgin, Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.535-558
    • /
    • 2008
  • This study evaluates seismic performance of the school buildings with the selected template designs in Turkey considering nonlinear behavior of reinforced concrete components. Six school buildings with template designs were selected to represent major percentage of school buildings in medium-size cities located in high seismic region of Turkey. Selection of template designed buildings and material properties were based on field investigation on government owned school buildings in several cities in western part of Turkey. Capacity curves of investigated buildings were determined by pushover analyses conducted in two principal directions. The inelastic dynamic characteristics were represented by equivalent single-degree-of-freedom (SDOF) systems and their seismic displacement demands were calculated under selected ground motions. Seismic performance evaluation was carried out in accordance with recently published Turkish Earthquake Code that has similarities with FEMA-356 guidelines. Reasons of building damages in past earthquakes are examined using the results of performance assessment of investigated buildings. The effects of material quality on seismic performance of school buildings were investigated. The detailed examination of capacity curves and performance evaluation identified deficiencies and possible solutions for template designs.

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.

송전선에 의해 송전철탑에 전달되는 풍하중 저감을 위한 회전형 점탄성감쇠기 (Rotational Viscoelastic Dampers for the Mitigation of Wind Loads on Transmission Tower Transferred from Transmission Lines)

  • 문병욱;민경원
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.420-427
    • /
    • 2006
  • In this study, wind loads transmitted to a transmission tower from transmission lines are mitigated using rotational viscoelastic dampers. First, the wind load characteristics in a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower. From the result of the stochastic analysis, the background component of the overturing moment caused by the wind loads acting on the transmission lines are found to have considerable portion in the total overturning moment. Based on this observation result, a strategy Installing rotational viscoelastic damper (VED) between tower arm and transmission line is proposed for the mitigation of the transmission line reactions, which play a role as dynamic loads on a transmission tower. For the purpose of verification, time history analysis is conducted for different wind velocities and VED parameters. The analysis result shows that the rotational VED is effective for the mitigation of the background component rather than the resonance component of the transmission line reactions and achieves the reduction ratio of 50% even for higher wind speed.

MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비 (Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper)

  • 박지훈;문병욱;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Derivation of analytical fragility curves using SDOF models of masonry structures in Erzincan (Turkey)

  • Karimzadeh, Shaghayegh;Kadas, Koray;Askan, Aysegul;Erberik, M. Altug;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.249-261
    • /
    • 2020
  • Seismic loss estimation studies require fragility curves which are usually derived using ground motion datasets. Ground motion records can be either in the form of recorded or simulated time histories compatible with regional seismicity. The main purpose of this study is to investigate the use of alternative ground motion datasets (simulated and real) on the fragility curves. Simulated dataset is prepared considering regional seismicity parameters corresponding to Erzincan using the stochastic finite-fault technique. In addition, regionally compatible records are chosen from the NGA-West2 ground motion database to form the real dataset. The paper additionally studies the effects of hazard variability and two different fragility curve derivation approaches on the generated fragility curves. As the final step for verification purposes, damage states estimated for the fragility curves derived using alternative approaches are compared with the observed damage levels from the 1992 Erzincan (Turkey) earthquake (Mw=6.6). In order to accomplish all these steps, a set of representative masonry buildings from Erzincan region are analyzed using simplified structural models. The results reveal that regionally simulated ground motions can be used alternatively in fragility analyses and damage estimation studies.

Application of joint time-frequency distribution for estimation of time-varying modal damping ratio

  • Bucher, H.;Magluta, C.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.131-147
    • /
    • 2011
  • The logarithmic decrement method has been long used to estimate damping ratios in systems with only one modal component such as linear single degree of freedom (SDOF) mechanical systems. This paper presents an application of a methodology that uses joint time-frequency distribution (JTFD) as input, instead of the raw signal, to systems with several vibration modes. A most important feature of the present approach is that it can be applied to a system with time-varying damping ratio. Initially the precision and robustness of the method is determined using a synthetic model with multiple harmonic components, one of them displaying a time-varying damping ratio, subsequently the results obtained from experiments with a reduced model are presented. A comparison is made between the results obtained with this methodology and those using the classical technique of Least Squares Complex Exponential Method (LSCE) in order to highlight the advantages of the former, such as, good precision, robustness and excellent performance in extreme cases, e.g., when very low frequency components and time varying damping ratio are present.