• Title/Summary/Keyword: SCr420

Search Result 13, Processing Time 0.041 seconds

A Study on SCr420HB Helical Gear Deformative Simulation by Heat Treatment Quenching Method (열처리 냉각방식 변화에 따른 SCr420HB 헬리컬 기어 시뮬레이션 적용에 관한 연구)

  • Byun, J.H.;Byun, S.D.;Yi, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • In this study, a simulation was used to derive an optimal process of heat treatment with carburizing, and compared the derived result with SCr420HB helical gear in heat treatment with carburized quenching process about a change of the quenching method. The optimal carburizing process time is derived by the simulation with the theoretical time. The process has been performed by oil quenching and salt quenching method. Through the comparison of the results from the simulation(Hardness, effective case depth hardened by carburizing treatment and deformation) and the actual process, analyzed the error value of each quenching. And it verified the applicability of the simulation.

Flow Stress of HSLA Steel by Heat Treatment (열처리한 HSLA 강의 유동특성)

  • Kim J. M.;Choi N. J.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.178-181
    • /
    • 2004
  • Heat treatment is one of important manufacturing process that determine the quality of the products. Because of a difference of mechanical property by heat treatment, It is necessary to This papers presents flow stress and yield point through tensile test. The goal of this study is to obtain the data of flow stress and yield point at martensite, bainite, ferrite/pearlite phase structure using SCM420, SCr420. The result of tensile test is satisfied and is expected to develop an available FEM analysis.

  • PDF

Optimization for Flow Uniformity on the Selective Catalytic Reduction (SCR) System of a Steam Supply Boiler (열병합 보일러 SCR 장치의 유동 균일화를 위한 최적화 연구)

  • Park, Young-Bin;Jang, Choon-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.415-420
    • /
    • 2009
  • Selective Catalytic Reduction(SCR) has been used for the reduction of $NO_x$ in a steam supply boiler. Recently, the reduction of $NO_x$ becomes an important research field because of its negative effect on an environment. Shape optimization of circular poles installed in the chamber, which is located in upstream of a SCR, has been performed using response surface method and three-dimensional Navier-Stokes analysis to enhance gas flow uniformity. Three design parameters, diameter, arranging angle and stretching ratio of circular poles, are considered in the present study. Throughout the shape optimization of a circular pole, gas flow uniformity is successfully increased by decreasing local recirculation flow in a square duct chamber. Recirculation flow observed in the corner of the square duct can be reduced by proper installation of a guide vane or a blunt body. Detailed flow characteristics are also analyzed and discussed.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCr420) During Quenching Process (냉간 단조용 SCr420 강의 퀜칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.68-71
    • /
    • 2003
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process. Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

  • PDF

Development of Controlled Gas Nitriding Furnace(III) : Application of Controlled Gas Nitriding Process and Evaluation of Durability for SCR420H Annulus gear (질화포텐셜 제어 가스질화로 개발(III) : SCR420H 에널러스기어에 대한 제어질화 적용 및 내구성 평가)

  • Won-Beom Lee;Minjae Jung;Min-Sang Kwon;Taehwan Kim;Chulwoo Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.161-173
    • /
    • 2023
  • This study investigated the effects of KN and process time on the formation of a compound layer at a nitriding temperature of 540℃ for SCR420H material. As a result of controlled nitriding from 3 h to 20 h at KN 1.2 atm-1/2, compound layers were formed up to about 10 ㎛, and an effective hardening depth of about 460 ㎛ was obtained. Initially, an ε+γ' complex phase was formed, and the phase fraction changed over time, and finally, the fraction of ε phase decreased to less than 1%. With higher KN, the compound thickness increased, a pore layer was formed on the surface, and the surface hardness decreased. By applying the controlled nitriding process, it was possible to produce annulus gears with a compound thickness of 12.8 ㎛ and an ε phase of 5% or less. The annulus gears made through controlled nitriding were mounted on a 6-speed transmission and tested for durability. As a result, the durability test of 250,000 km was satisfied, and the transmission efficiency was also confirmed to be expected.

Effect of Ti Addition on the Microstructure and Grain Coarsening of SCR420H Steel (SCR420H강의 미세조직과 결정립 조대화에 미치는 Ti 첨가 영향)

  • Jeonghu Choi;Sungjin Kim;Minhee Kim;Jaehyun Park;Jaehyeok Sin;Minhwan Ryu;Woochul Shin;Minwook Kim;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.163-171
    • /
    • 2024
  • SCR420H steel is a low-carbon chromium alloy steel designed for carburizing heat treatment. Recently, research is being conducted on high-temperature carburization heat treatment to reduce costs and CO2 emissions by shortening the carburization time to meet the international carbon neutral policy. However, this high-temperature carburization heat treatment coarsens the steel grains and causes a decrease in mechanical properties. In this study, a large amount of Ti was added to increase the grain refinement effect in the high-temperature carburizing process. We investigated the microstructure and precipitates of SCR420H steel without Ti (Al steel) and with Ti (AlTi steel). Thermodynamic calculations showed that the AlN and (Ti,Nb)(C,N) precipitated in Al steel, while (Ti,Nb)(C,N) and Ti4C2S2 precipitated in AlTi steel. Addition of Ti increases the fraction of bainite after reheating process. Transmission electron microscopy analysis shows that small amounts of AlN and (Ti,Nb)(C,N) precipitates are formed in the Al steel. The addition of Ti increases the density of (Ti,Nb)(C,N) precipitates and induces the formation of Ti4C2S2 precipitates, increasing the grain coarsening temperature (GCT) under all heat treatment conditions. Higher reheating temperatures also resulted in higher GCT values due to increased precipitation.

Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear (자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo;Kim, Hyun-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.

Design and Analysis of precision Forging Process by Utilizing Pneumatically Operated Enclosed Die Set (공압식 폐쇄다이세트 적용 정밀단조공정 설계 및 해석기술)

  • Lee, K.S.;Eom, D.H.;Kang, S.H.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.382-386
    • /
    • 2009
  • This paper describes design and analysis techniques of cold forging process for precise producing of T-200 type spider made of SCr420H by utilizing pneumatically operated enclosed die set. Since deducing feasible closing force is an important factor to optimize entire pneumatically operated cold forging system, a series of FE analyses with varying the number of gas cylinders has been carried out to investigate the influence of closing force upon the direction of applied load at die surfaces. It also reveals the optimum distribution of the gas cylinders in terms of the flatness of upper/lower plates.

  • PDF

Microstructure and Abnormal Grain Coarsening Behavior of Nb-microalloyed Steel (Nb 첨가 합금강의 미세조직과 결정립 조대화 거동)

  • Sungjin Kim;Jeonghu Choi;Minhee Kim;Minhwan Ryu;Jaehyun Park;Jaehyeok Sin;Woochul Shin;Minwook Kim;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.155-162
    • /
    • 2024
  • SCr420H steel which is commonly utilized for automotive components requires the carburizing heat treatment process. Abnormal grain growth during this treatment significantly affects the mechanical properties of the steel parts. Consequently, a process designed to prevent abnormal grain growth at certain elevated temperatures is essential. For enhanced grain refinement, we considered the addition of Nb in SCr420H steel. The experimental condition of the carburizing heat treatment involved reheating the steel sample to temperatures between 940℃ and 1080℃. Using scanning electron microscopy, we examined the microstructure of specimens treated with the secondary solution, revealing an organization of bainite and ferrite. Transmission electron microscopy was utilized to determine the type, shape, and size of the carbonitrides, showing a high fraction of AlN at the secondary solution treatment temperature of approximately 1050℃ and of (Nb,Ti)(C,N) around 1200℃. AlN particles measured about 100 nm and (Nb,Ti)(C,N) about 50 nm. Optical microscopy was utilized to assess grain size variations at different secondary solution treatment temperatures. It is noted that the temperature at which abnormal grain coarsening occurred rose with increasing secondary solution treatment temperatures, indicating a greater influence of (Nb,Ti)(C,N) with higher heat treatment temperatures. This research provides reference data for preventing abnormal grain growth in Nb-added low alloy steels undergoing carburizing heat treatment.

Analysis of the effects of operating point of tractor engine on fatigue life of PTO gear using simulation

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.441-449
    • /
    • 2016
  • Agricultural tractors are designed using the empirical method due to the difficulty of measuring precise load cycles under various working conditions and soil types. Especially, directly drives various tractor implements, the power take off (PTO) gear. Therefore, alternative design methods using gear design software are needed for the optimal design of tractors. The objective of this study is to simulate fatigue life of the PTO gear according to the operating point of the tractor engine. The PTO gear was made with SCr415 alloy steel with carburizing and quenching treatments. The fatigue life of the PTO gear was simulated by using bending and contact stress according to the torque of the load levels. The PTO gear simulation was conducted by the KISSsoft commercial software for gear analysis. Bending and contact stress were calculated by the ISO 6336:2006 Method A and B. The simulation of fatigue life was calculated by the Miner's cumulative damage law. The total fatigue life of tractors can be estimated to 3,420 hours; thus, 3,420 hours of fatigue life were used in the simulation of the PTO gear of tractors. The main simulation results showed that the maximum fatigue life of the PTO gear was infinite fatigue life at maximum engine power. Minimum fatigue life of the PTO gear was 19.61 hours at 70% of the maximum engine power. Fatigue life of the PTO gear changed according to load of tractor. Therefore, tractor work data is needed for optimal design of the PTO gear.