• Title/Summary/Keyword: SCS-CN

Search Result 98, Processing Time 0.024 seconds

Runoff Analysis of Kumho River Basin Using HEC-HMS (HEC-HMS를 이용한 금호강 유역의 유출분석)

  • Jung, Chan-Yong;Lim, Hyuk-Jin;Song, In-Ryeol;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1078-1083
    • /
    • 2009
  • HEC-HMS(Hydrologic Modeling System)은 강우-유출 모의를 위한 차세대 소프트웨어이며 HEC-1에 포함되어 있는 단위도 및 수문학적 홍수추적 이외에도 격자형 강우자료(레이더 데이터)를 이용하여 적용할 수있는 유사분포 유출변화와 장기 연속모의에 적용할 수 있는 간단한 수분감소 등을 추가적으로 포함하고 있다. 또한 GUI(Graphical User Interface)환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래�d 처리 및리포트 출력기능으로 구성되어 있으며 여러 가지 프로그램 언어(C, C++, Fortran)를 이용하여 개발되었다. 본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 5개의 소유역과 두 개의 하도로 구성하여 유출모의를 실시하였으며 수문자료 선정은 2007년$^{\sim}$2008년에 발생한 홍수사상과 유량조사 사업단에서 개발한 수위-유량관계곡선식을 활용하였다. 또한, HEC-GeoHMS 모형을 GIS와 연계하여 지형인자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산 조건에서 손실 우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 또한 관측치와 계산치의 적합도 검증은 평균제곱 근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다

  • PDF

APPLICATION OF QUICKBIRD SATELLITE IMAGE TO STORM RUNOFF MODELLING

  • Kim, Sang-Ho;Lee, Mi-Seon;Park, Geun-Ae;Hong, Suk-Young;Choi, Chul-Uong;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.602-605
    • /
    • 2006
  • This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a 1.05 $km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS (Soil Conservation Service)-CN (Curve Number) and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrological Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events.

  • PDF

Rainfall-Runoff Analysis in the Whangryong River Basin Using HEC-HMS and HEC-GeoHMS (HEC-HMS, HEC-GeoHMS를 이용한 황룡강유역의 유출분석)

  • Kim, Chul;Park, Nam-Hee
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.275-287
    • /
    • 2002
  • Rainfall-Runoff Analysis in Whangryong River Basin was made using HEC-HMS and HEC-GeoHMS. The Basin was divided into three sub-basins using HEC-CeoHMS and GIS. Then, GIS input data were derived from each sub-basins. SCS CN runoff-volume model, Snyder's UH direct-runoff model, exponential recession baseflow model and Muskingum routing model in HEC-HMS were used to simulate the runoff volume using selected rainfall event and the parameters were optimized. Peak flowrate calculated using optimized parameters was compared to the observed flowrate in the basin. The result proved to be good agreement with each other. Optimized parameters in this local basin can be used to calculate the peak flowrate in the future.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

Assessment of Hydrological Impact by Long-Term Land Cover Change using WMS HEC-1 Model in Gyeongan-cheon Watershed (WMS HEC-1 모형을 이용한 경안천 유역의 경년 수문변화 분석)

  • Lee, Jun-Woo;Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The purpose of this study is to assess the hydrological impact on a watershed from long-term land cover changes. Gyeongan-cheon watershed($558.2km^2$) was selected and WMS(watershed modeling system) HEC-1 model was adopted as an evaluation tool. To identify land cover changes, five Landsat images(1980/2/15, 1986/4/15, 1990/4/26, 1996/4/26, 2000/5/17) were selected and analyzed using maximum likelihood method. As a result, urban areas have increased by 5.6% and forest areas have decreased by 6.1% between 1980 and 2000. SCS curve number increased by 9.8. To determine model parameters and evaluate HEC-1 model, five storm events(1998/5/2, 1998/8/23, 1998/9/30, 1999/5/3, 2000/7/29) were used. The simulated stream flow agreed well with the observed one with relative errors ranging from 9% to 36%. For 254 mm daily rainfall of 30 years frequency, due to the increase of urban areas peak flow increased by $455m^3/sec$ and the time of peak flow reduced about four hours for 20 years land cover changes.

  • PDF

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Correlation Analysis Using Precipitation Radar of TRMM Satellite and Ground Observed Value : YONG-DAM Watershed (TRMM/PR 관측치와 지상 관측치와의 상관분석 - 용담댐 유역을 대상으로 -)

  • Jang, Choul-Hee;Park, Guen-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.335-339
    • /
    • 2001
  • The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carrying into orbit the first space-borne Precipitation Radar(PR). The purpose of this study is to identify the relationship between TRMM/PR and AWS raingage data, and test the possibility to apply storm runoff prediction. Four TRMM/PR data in 1999 for Yongdam watershed was adopted and made a simple linear regression equation using AWS data. By using the equation, the storm runoff was estimated with the adjusted rainfall. TRMM/PR rainfall and runoff was overall underestimated by the carry-over effect of rainfall error and SCS-CN value selection.

  • PDF

Estimation of Groundwater Storage Change and Its Relationship with Geology in Eonyang Area, Ulsan Megacity (울산광역시 언양지역의 지하수 저류 변화량 산정 및 지질과의 관련성)

  • Kim, Nam-Hoon;Hamm, Se-Yeong;Kim, Tae-Yong;Cheong, Jae-Yeol;An, Jeong-Hoon;Jeon, Hang-Tak;Kim, Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.263-276
    • /
    • 2008
  • In diverse hydrogeologic fields, estimation of groundwater storage change is one of the most critical issues. Accurate estimation methods for determining groundwater storage change are required more and more. For Yeonyang area of Ulsan Megacity, groundwater storage change was estimated by using water balance method and hydrogeological analyses. The estimates of groundwater storage change was 240 mm corresponding to 18.7% of mean annual precipitation. Direct runoff was calculated as 137 mm (10.6% of mean annual precipitation) by using SCS-CN method. Evapotranspiration based on the Thornthwaite method was calculated as 776 mm (60.5% of mean annual precipitation). Hydraulic properties of the soil types do not show any distinct relation with hydraulic conductivity of the rocks. This fact suggests that hydraulic property on the surface is different from that of subsurface geology. According to multi-linear regression analysis between groundwater storage change and hydraulic parameters, a regression equation of groundwater storage change, which was explained by precipitation and evapotranspiration, was established.

LIDMOD2 Development for Evaluation of LID/BMPs (LID/BMPs 효과분석을 위한 LIDMOD2 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Na, Eun Hye;Park, Chan-Gi;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2010
  • LIDMOD2 was developed for evaluation of low impact development (LID) and best management practice (BMP) by modification of Site Evaluation Tool (SET). The modification includes employment of SCS-CN method for annual runoff simulation, unit load method for annual pollutant loads simulation, and the method proposed by Korean TMDL for calculating pollutant reduction by BMPs. The CN values were updated with regionalized parameters within Nack-Dong River basin because these are important parameters for simulating hydrology. LIDMOD2 was tested by applying to Andong Bus terminal. As a simulation results, pollutant loads and surface runoff will be significantly increased by post-development without LID compared with those from pre-development. LID technique was simulated to efficiently reduce surface runoff and pollutant load and increase infiltration. LIDMOD2 is screening level tool and easy to use because LIDMOD2 is based on spread sheet and most of parameters are regionalized. LIDMOD2 was illustrate that it could evaluate LID well by summarizing and graphing annual hydrology, annual pollutant loading, and hydrograph for event storm. The calculation methods related with pollutant loads are employed from the guideline of Korean TMDL and it can be useful tool for Korean TMDL to evaluate the effect of LID/BMP on developing area.

A Sensitivity Analysis of Model Parameters involved in Clark Method on the Magnitude of Design Flood for urban Watersheds (CLARK 유역추적법에 의한 계획홍수량 산정에 미치는 매개변수의 민감도 분석)

  • Yoon, Kwang-Wonn;Wone, Seog-Yeon;Yoon, Yong-Nam
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 1994
  • A Sensitivity analysis on the model parameters involved in the Clark watershed routing method is made to demonstrate the effect of each parameter on the magnitude of 50-year design flood for small urban streams. As for the rainfall parameter the time distribution pattern of design storm was selected. For short duration storms Huff, Yen & Chow and Japanese Central type distributions were selected and the Mononobe distribution of 24-hour design storm was also selected and tested for Clark method application. The effect of SCS runoff curve number for effective rainfall and the methods of subbasin division for time-area curve were also tested. The routing parameter, i.e. the storage constant(K), was found to be the dominating parameter once design storm is selected. A multiple regression formula for K correlated with the drainage area and main channel slope of the basin is proposed for the use in urban stream practice for the determination of design flood by Clark method.

  • PDF