• Title/Summary/Keyword: SCS method

Search Result 1,131, Processing Time 0.049 seconds

Change of AMC due to Climatic Change (기후변화에 따른 선행토양함수조건(AMC)의 변화)

  • Yoo, Chulsang;Park, Cheong Hoon;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.233-240
    • /
    • 2006
  • One of the main factor that effects on the CN's value in SCS Curve Number method for the estimation of direct runoff is the antecedent soil moisture condition (AMC). It is also common to use the AMC-III in hydrologic practice, which provides the largest runoff as possible. In this paper, AMC defending on the rainfall characteristics is analyzed using daily rainfall data at rainy season (June~September) of the Seoul station from 1961 to 2002. The probability mass function of AMC is also investigated to analyze the variation of AMC based on climate change, scenarios from several General Circulation Model (GCM) predictions. As a results we can find that the occurrence of AMC-I is reduced, and AMC-III is increased, whereas AMC-II does not change.

Application of WMS Model for Runoff Analysis of Miho Stream Basin (미호천 유역의 유출해석을 위한 WMS 모형의 적용)

  • Ahn, Sang-Jin;Lee, Moo-Kyeong;Jun, Kye-Won;Yeon, In-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.929-938
    • /
    • 2004
  • In this study, Miho stream basin(Seokhwa water level gauging station) In Geum river, Flood control main station of Geum River Flood Control Office, is selected. Hydrologic topographical informations are calculated using WMS which is hydrologic analysis software coupled with GIS Method, and flood analysis is accomplished by HEC-1 included In WMS. To calculate the effective rainfall CN values of SCS are used. Clark, Snyder and SCS methods are selected respectively to derive unit hydrograph. This study shows the applicability of GIS techniques to runoff simulation in ungauged basin by comparing with actual measured flood hydrograph. As a results, Snyder(Tulsa) method and Clark (Herby) method is suitable to Miho stream basin. But Snyder(Tulsa) method is suitable more than Clark(Herby) method. And according to the degree of urbanization, the peak discharge has increased and the peak time has tended to decrease.

The Effect of Spinal Cord Stimulation in Patients with Complex Regional Pain Syndrome (복합부위통증증후군 환자에서 척수자극술의 효능)

  • Kim, Won Young;Moon, Dong Eon;Choi, Jin Hwan;Park, Chong Min;Han, Seong Min;Kim, Shi Hyeon
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • Background: Complex regional pain syndrome (CRPS) is a painful, disabling disorder for which no proven treatment has been established. The purpose of this investigation was to assess the evidence of the efficacy of spinal cord stimulation (SCS) in the management of pain in CRPS patients. Methods: Between March 2004 and June 2006, 11 patients with CRPS were treated with SCS. The visual analog scale (VAS) score for pain (0⁣-10) and pain disability index (PDI) were obtained in all patients prior to treatment, and 1, 3 and 6 months post-implantation. Results: All 11 patients, 5 men and 6 women, with a median age and duration of CRPS of 44 years and 48.8 months, respectively, successfully received a lead implantation for SCS. The mean VAS pain score prior to the treatment was 85.5 out of 100 mm. After SCS implantation, the mean VAS pain scores were 49.5, 57.0 and 56.0 at 1, 3 and 6 months after the procedure, respectively. The mean pain score for allodynia was decreased by 50%, with a significant reduction of the PDI also observed after the treatment. Conclusions: Our current study suggests that SCS implantation is a safe and effective method in the management of CRPS patients.

Division of Work Regions for Operating the Yard in a Container Terminal (작업 영역 구분을 이용한 컨테이너 터미널의 장치장 운영 전략)

  • Ahn, Eun-Yeong;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.335-336
    • /
    • 2007
  • This paper propose a heuristic method that divides the block into some work regions to operate stacking cranes efficiently in a automated container terminal where the blocks with non-crossing stacking cranes(SC) are laid out in perpendicular to the quay. Typically, fund over between SCS and trucks occur at each side if the blocks, and each if the landside and seaside SCS is responsible for the jobs that occur at its own side. When a container to be fetched is located far from fund over point, the SC should move a long distance and the interference between the two cranes am occur, which decreases the productivity of the SCS. Therefore, our method divides the block into two exclusive and one shared regions and let the containers located far from their fund over points to be transferred to the shared region by the other side crane before they are carried out. Although simple this method am reduce the crane movement and the interference between the two cranes. Simulation experiment shows that our proposed method significantly improves the productivity if the container terminal than previous heuristic that does not divide work regions.

  • PDF

The Comparison of Existing Synthetic Unit Hydrograph Method in Korea (국내 기존 합성단위도 방법의 비교)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.659-672
    • /
    • 2001
  • Generally, design flood for a hydraulic structure is estimated using statistical analysis of runoff data. However, due to the lack of runoff data, it is difficult that the statistical method is applied for estimation of design flood. In this case, the synthetic unit hydrograph method is used generally and the models such as NYMO method, Snyder method, SCS method, and HYMO method have been widely used in Korea. In this study, these methods and KICT method, which is developed in year 2000, are compared and analyzed in 10 study areas. Firstly, peak flow and peak time of representative unit hydrograph and synthetic unit hydrograph in study area are compared, and secondly, the shape of unit hydrograph is compared using a root mean square error(RMSE). In Nakayasu method developed in Japan, synthetic unit hydrograph is very different from peak flow, peak time, and the shape of representative unit hydrograph, and KICT method(2000) is superior to others. Also, KICT method(2000) is superior to others in the aspects of using hydrologic and topographical data. Therefore, Nakayasu method is not a proper in hydrological practice. Moreover, it is considered that KICT model is a better method for the estimation of design flood. However, if other model, i.e. SCS method, Nakayasu method, and HYMO method, is used, parameters or regression equations must be adjusted by analysis of real data in Korea.

  • PDF

Evaluation and Classification System of Slope using the Slope Code System (SCS) (사면기호시스템을 이용한 사면의 평가 및 분류시스템 제안)

  • Jang, Hyun-Sic;Kim, Ji-Hye;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.383-396
    • /
    • 2014
  • The condition, characteristics, and stability of slopes, as well as the consequences of slope failure, need to be understood for the proper stabilization of slopes and preclusion of potential disasters arising from slope failure. Here, a slope code system (SCS) that succinctly and accurately reflects the various conditions of a slope is proposed. The SCS represents the condition, characteristics, and geotechnical stability of slopes, as well as the consequences of slope failure, and the method is quickly and easily applied to a given slope. The SCS comprises five elements: 1) the slope material; 2) the genetic origin (rock type) and geological structure of the slope; 3) the geotechnical stability of the slope; 4) the probability of failure and remedial works made upon the slope; and 5) the consequences of failure. A letter code is selected from each element, and the result of the evaluation and classification of the slope is given as a five-letter code. Because the condition, characteristics, and geotechnical stability of a slope, as well as the consequences of slope failure, are provided by the SCS, this system will provide an effective mechanism for the maintenance and management of slopes, and will also allow more informed decision-making for determining which slopes should be prioritized for remedial measures.

Forecasting the Flood Inflow into Irrigation Reservoir (관개저수지의 홍수유입량 예측)

  • 문종필;엄민용;박철동;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method (수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정)

  • Yoon, Kwang-Sik;Kim, Young-Joo;Yoon, Suk-Gun;Jung, Jae-Woon;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.