• Title/Summary/Keyword: SCR control system

Search Result 112, Processing Time 0.03 seconds

Ammonia Flow Control for NOx Reduction in SCR(Selective Catalytic Reduction) System of Refuse Incineration Plant (소각로의 Nox제어용 SCR시스템의 암모니아 공급량 제어)

  • 김인규;여태경;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.30-34
    • /
    • 1997
  • This paper Describe a modelling method for SCR(selective Catalytic reduction) system in refuse incineration plant. We consider the SCR system as a single input single output system. For modelling the SCR system, an auto regressive exogeneous(ARX) modelling method is used. In this case, we should design the white noise input for modelling and put it on the system as an input (.NH/sap2/.), and taken an outlet NOx as an output. From these two relations, we design the ARX model with 45 second delay time and transform to discrete system with 0.5 sampling time. Using the obtained SCR model, we simulate the SCR system to reduce the outlet NOx content by a conventional PID control method.

  • PDF

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Control of SCR System for NOx Reduction in a Refuse Incineration Plant Using Repetitive Control Method (반복제어법을 이용한 소각장 NOx 저감용 SCR 시스템의 제어)

  • 김인규;여태경;김환성;김상봉
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2762-2770
    • /
    • 2000
  • The refuse incineration plant has an important role in saving the combustion energy for local heating system. But harmful combustion gas(NOx etc.) leads to some serious environmental problem. To reduce the gas, a SCR(Selective Catalytic Reduction)system is installed and it is controlled by adjusting the flow of ammonia gas(NH3) . In this paper, we apply a repetitive control method to reduce NOx by adjusting the flow of ammonia gas for SCR system in a refuse incineration plant which is located in Haeundae, Pusan, Firstly, we analyze the inlet NOx period by FFt method, and verify its periodic variations. Secondly, we design a repetitive control system by using state space model method. Lastly, the effectiveness of repetitive control system is shown by comparing to a conventional PID control in simulation and experimental results.

Ammonia flow control for NOx reduction in SCR system of refuse incineration plant (소각로의 NOx 제어용 SCR 시스템의 암모니아 공급량제어)

  • Kim, In-Gyu;Yeo, Tae-Gyeong;Kim, Hwan-Seong;Kim, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.451-457
    • /
    • 1998
  • This paper describes a modelling method for SCR(selective catalystic reduction) system in refuse incineration plant. We consider the SCR system as a single input and single output system. For modelling the SCR system, an auto regressive exogeneous(ARX) modelling method is used. In this case, we should design the white noise input for modelling and put it on the system as an input$(NH_3)$, and take an outlet NOx as an output. From these two relations, we design the ARX model with 45 second delay time and transform to a discrete system with sampling time of 0.5 second. Using the obtained SCR model, we verify that the outlet NOx is deeply related with stoker`s moving in boiler of refuse incineration plant.

Study on the Performance Characteristics of Urea-SCR System in the ETC Test (ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구)

  • Ham, Yun-Young;Choi, Dong-Seok;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

A New High Pulse SCR Inverter for Utility Interactive Renewable Power Generation System (계통연계형 대체에너지 발전시스템을 위한 새로운 고펄스 SCR 인버터)

  • 정재혁;김현정;최세완;김영석;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a new line-commutated SCR inverter for renewable power generation system is proposed. The proposed inverter system includes a 6-pulse SCR inverter and an auxiliary circuit. By the proper operation of the auxiliary circuit, the pulse number of the inverter system is increased and the output voltages and currents harmonics are significantly reduced. Analysis, control and simulation for 24-pulse operation of the proposed scheme is Presented and the experimental results from a laboratory Prototype verify the proposed theory.

The Effect of Additive Catalyst according to Thermal Aging of Vanadia SCR (Vanadia SCR의 열적 열화에 따른 조촉매의 영향)

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The purpose of the study is to investigate the effect of additive catalyst according to the thermal aging of vanadia SCR catalysts. At a fresh condition, the $3V_2O_5-5WO_5-92TiO_2$ SCR showed the highest NOx conversion rate of about 30%, the performance of 5 kinds of SCR to which additive catalysts were added was not improved due to the insignificant effect of acid site control. For catalysts aged for 12h at $700^{\circ}C$, the SCR to which 3wt% Zeolite was added decreased in NOx conversion rate by 2.5% on average compared to the fresh SCR, it showed higher thermal durability than other additive catalyst. For 3Zeolite with high performance of NOx conversion rate during thermal aging, the Zeolite with stronger durability at a high temperature than other 5 kinds of SCR catalysts decreased the sintering of catalysts.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.