• Title/Summary/Keyword: SCR Catalyst

Search Result 276, Processing Time 0.03 seconds

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst (선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구)

  • Park, Young-Joon;Hong, Woo-Kyoung;Ka, Jae-Geum;Cho, Yong-Seok;Joo, Jae-Geon;Kim, Hyun-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.

Application of SNCR/SCR Combined process for effective operation of SCR Process

  • 최성우;최상기
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH$_3$/O$_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O$_2$. Commercial catalyst, sulfated V$_2$O$\_$5/-WO$_3$/TiO$_2$, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h$\^$-1/ and 6,000 h$\^$-1/ in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900-950$^{\circ}C$. About 88% NOx reduction was achieved with an optimum temperature of 950$^{\circ}C$ and NSR=1.5. SCR NOx reduction using commercial V$_2$O$\_$5/-WO$_3$-SO$_4$/TiO$_2$ catalyst occurred in a temperature window of 200-450$^{\circ}C$ 80-98% NOxreduction was possible with SV=2400 h$\^$-1/ and a molar ratio of 1.0-2.0. A SNCR/SCR(SV=6000 h$\^$-1/) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h$\^$-1/) unit process of 98% NOx reduction. The NH$_3$-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH$_3$ slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900$^{\circ}C$-950$^{\circ}C$, and SCR space velocity of 6000 h$\^$-1/. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of T$\_$SNCR/=950$^{\circ}C$, T$\_$SCR/=350$^{\circ}C$, 5% O$_2$, SV=6000 h$\^$-1/ and NH$_3$/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.

Performance Prediction of SCR-DeNOx System for Reduction of Diesel Engine NOx Emission (디젤엔진의 NOx 저감을 위한 SCR-DeNOx 후처리 시스템 성능 예측)

  • 김만영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.71-76
    • /
    • 2003
  • A numerical simulation of selective catalytic reduction (SCR) for NO with $NH_3$ is conducted over the $V_2O_5/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The governing $NH_3$ and NO transport equations are considered by using the time-dependent FCT (Flux-Corrected Transport) algorithm. After a validating simulation for $NH_3$ step feed and shut-off experiments is analyzed, transient behavior of $NH_3$ and NO concentration in a SCR catalyst is investigated by changing such parameters as inflow $NH_3$ concentration, temperature of the catalyst, and $NH_3$/NOx ratios.

A Numerical Analysis on the Flow Characteristics inner Catalytic Reactor for Marine SCR System (선박용 SCR 시스템의 촉매반응기 내부 유동특성에 관한 수치해석)

  • Yi, C.S.;Suh, J.S.;Yun, J.H.;Lim, B.J.;Park, C.D.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.125-126
    • /
    • 2012
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. Performance of NOx removal in SCR process depends on such various factors as catalyst factors(catalyst composition, shape, velocity, etc.), exhaust gas temperature and velocity distribution. In this study checked flow uniformity with the flow characteristics in the SCR reactor by using STAR CCM+. The pressure drop of experiment and simulation had similar result more than 90% at catalytic Cell. Also, flow uniformity calculated about 0.9036 ant 1st catalytic ind SCR reactor.

  • PDF

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method (다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구)

  • Kim, Dong Ho;Seo, Phill Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.

The Effect of SO2 in Flue Gas on the SCR Activity of V/TiO2 (배가스 중 SO2가 V/TiO2 SCR활성에 미치는 영향)

  • Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.490-497
    • /
    • 2006
  • $V_{2}O_{5}$/$TiO_{2}$ catalyst can be deactivated by ammonium salts formed by $SO_{2}$ oxidation and unreacted ammonium in presence of $SO_{2}$ in flue gas. The deactivation of catalyst by $SO_{2}$ depends on the $SO_{2}$ oxidation to $SO_{3}$. The oxidation of $SO_{2}$ is weakly affected by oxygen concentration, and strongly by the amount of vanadium loaded onto titania supports. Because unreacted ammonia is one of elements to form the ammonium salts, it is important to control the mole ratio of $NH_{3}/NOx$ in SCR. Thus the experiments about $NH_{3}/NOx$ were carried out. The reason of low activity of catalyst deactivated by ammonium salts is the change of pore volume. And TPD (Temperature Programmed Decomposition) was performed to find the decomposition of ammonium bisulfate on deactivated catalyst.