• Title/Summary/Keyword: SCN.

Search Result 166, Processing Time 0.025 seconds

Effects of Anions on PAH Transport in Rabbit Kidney Cortical Slices (가토 신피질 절편에서 PAH$(\rho-aminohippuric\;acid)$ 이동에 미치는 음이온의 영향)

  • Suh, Duk-Joon;Lee, Sang-Ho;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.49-59
    • /
    • 1985
  • The effects of anions on net accumulation of $(\rho-aminohippuric\;acid)$(PAH) were studied in rabbit kidney cortical slices. Experiments were carried while varying the major anionic composition of the incubation medium(replacement of $Cl^-$ by isethionate and $SCN^-$). The total replacement of $Cl^-$ with isethionate, $SO_4\;^{2-}$ and $SCN^-$ in the incubation medium decreased the 60-min slice-to-medium concentration(S/M) ratio of PAH to 60%, 40% and 50% of control value, respectively. The degree of inhibition in PAH accumulation by the replacement of isethionate and $SCN^-$ was increased with increasing of both preincubation and incubation time. The influence of isethionate and $SCN^-$ on PAH uptake was fully reversible. Both isethionate and $SCN^-$ increased the apparent Km value significantly with no change on the apparent Vmax value, suggesting a competitive inhibition on PAH uptake. And the inhibitory effect of $SCN^-$ on PAH uptake decreased with increase of pH in the incubation medium while that of isethionate increased with increase of pH. Intracellular water content, intracellular electrolyte concentration and oxygen consumption were not influenced by the replacement of $Cl^-$ with isethionate or $SCN^-$ in the incubation medium. These results suggest that both $isethionate^-$ and $SCN^-$ inhibit the PAH uptake by binding to some site necessary for normal PAH transport without affecting the cellular viability.

  • PDF

Kinetics of Pholopolymerization of Acrylonitrile Using Sensitizer (광증감제에 의한 Acrylonitrile의 광중합 속도 (I))

  • Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 1999
  • Kinetics of solution photopolymerization of acrylonitrile(AN) with sensitizer, such as $NaSCN,\;KSCN,\;Ba(SCN)_2,\;NH_4SCN,\;ZnCl_2$ and $Na_2SeO_3$, were studied using UV crosslinker at various monomer concentrations($1.8{\sim}7.58mo1/1$), sensitizer concentrations($10{\sim}60%$), reaction temperature($10{\sim}70^{\circ}C$), energy intensities($1,000{\sim}9,900{\mu}J/cm^2$) at isothermal condition under nitrogen atmosphere. Under the irradiation of high pressure mercury lamp(${\lambda}=365nm$). High conversion and uniform molecular weight were obtained compare to thermal polymerization at reaction temperature of $50^{\circ}C$, reaction time of 3hr and 50% NaSCN without any initiator. Their kinetic model was as follows : $R_p=0.0142[M]^{0.82}[I]^{0.49}[S]^{0.52}$ exp(-1.33/RT).

  • PDF

Variations of SCN Space in Metabolic Acidosis and Alkalosis in Rabbits (대사성 산증 및 알칼리증에 있어서 SCN 공간의 변화)

  • Earm, Yung-E;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.41-44
    • /
    • 1971
  • Thiocyanate space was determined in 23 bilaterally nephrectomized rabbits in acute metabolic acidosis and alkalosis. Acid-base disturbances were induced by the infusion of 0.3 N HCI or 0.3 N NaOH solution intravenously with the rate of 1 ml/min for 40 to 60 minutes. The blood pressure was monitored throughout the experiment and no changes in blood pressure was confirmed. The following results were obtained. 1. In the saline infused control rabbits, PH was 7.385 with negligible change in pH after the infusion, SCN space was 23.6% of body weight. 2. In the metabolic acidosis group, pH dropped from 7.417 to 7 130 and SCN space was 22.8% of body weight and suggested a negligible change in the extracellular space volume. 3. In the metabolic alkalosis group, pH increased from 7.393 to 7.478 and SCN space was 25.7% of body weight which confirmed a significant increase in the extracellular space volume.

  • PDF

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A

  • Han, Ji-Yeon;Kim, June-Bum
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.11
    • /
    • pp.470-472
    • /
    • 2011
  • Familial hyperkalemic periodic paralysis (HYPP) is an autosomal-dominant channelopathy characterized by transient and recurrent episodes of paralysis with concomitant hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene $SCN4A$ have been reported to be responsible for this disease. Here, we report the case of a 16-year-old girl with HYPP whose mutational analysis revealed a heterozygous c.2111C>T substitution in the $SCN4A$ gene leading to a Thr704Met mutation in the protein sequence. The parents were clinically unaffected and did not have a mutation in the $SCN4A$ gene. A $de$ $novo$ $SCN4A$ mutation for familial HYPP has not previously been reported. The patient did not respond to acetazolamide, but showed a marked improvement in paralytic symptoms upon treatment with hydrochlorothiazide. The findings in this case indicate that a $de$ $novo$ mutation needs to be considered when an isolated family member is found to have a HYPP phenotype.

An NMR Study on Complexation of Ortho-Xylyl-17-Crown-5 with $^{7}Li\;and\;^{23}Na$ Ions in Acetonitrile

  • 윤신영;안상두;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.265-269
    • /
    • 1995
  • Complexation of ortho-xylyl-17-crown-5 (X17C5) with alkali metal ions in acetonitrile was studied by 7Li and 23Na NMR spectroscopy. The complex formation constants of X17C5 with LiI, LiSCN, NaI, and NaSCN were determined by investigating the changes in the chemical shifts as a function of the concentration ratio of X17C5 to metal ion. It was found that X17C5 forms 1:1 complex with Li+ and Na+ ions and the log Kf's for the complexation with LiI, LiSCN, NaI, and NaSCN were determined to be 2.88, 2.43, 2.53, and 2.30, respectively. In particular, the kinetics of complexation of X17C5 with Na+ was investigated by the method of 23Na NMR lineshape analysis. Activation energies were determined from Arrhenius plot of the resultant rate constant data to be 25.4 kJ/mol for NaI and 15.1 kJ/mol for NaSCN. Other kinetic parameters were also calculated by employing the Eyring equation. The decomplexation rates measured were 1.82 × 104 M-1s-1 for NaI and 1.50 × 104 M-1s-1 for NaSCN. It is concluded that the decomplexation mechanism is predominantly a bimolecular cation exchange for both cases.

Inhibitory Effects of Toxic Materials on Activation of Microorganisms in Coke Plant Wastewater (코크스폐수에 함유된 $S^{-2}$$SCN^-$이 미생물 활성에 미치는 영향)

  • Kim, Sang-Sik;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.423-427
    • /
    • 2013
  • This research was carried out to identify the characteristics of the wastewater from coke oven gas (COG) purification process of the coke plant, and derive optimal operating conditions for the treatment of wastewater. The coke plant wastewater contains highly concentrated $S^{-2}$ and $SCN^-$ that are harmful to microorganisms, and their concentrations were 6.8~11.2 mg/L and 190~320 mg/L, respectively. When the $S^{-2}$ ion concentration was lower than 10 mg/L, $SV_{30}$ of active sludge was 280~ 340 mL and the sludge sedimentation velocity was very fast. But, when the $S^{-2}$ ion concentration was higher than 15 mg/L, $SV_{30}$ of the active sludge was 560~680 mL and the sludge sedimentation velocity was very slow. Also when the $SCN^-$ ion concentration was lower than 300 mg/L, $SV_{30}$ of the active sludge was 245~320 mL and the sludge sedimentation velocity was very fast. But, when the $SCN^-$ ion concentration was higher than 400 mg/L, $SV_{30}$ of the active sludge was 470~ 567 mL and the sludge sedimentation velocity was slow. To treat the wastewater generated by COG purification process of the coke plant effectively and to maintain microorganism activities in good conditions, the ion concentration of $S^{-2}$ and $SCN^-$ should be lower than 15 mg/L and 400 mg/L, respectively.

Design of military supply chain network using MIP & Simulation model (혼합정수계획법과 시뮬레이션 기법을 이용한 군 공급사슬망 설계)

  • Lee, Byeong-Ho;Jeong, Dong-Hwa;Seo, Yoon-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.1-12
    • /
    • 2008
  • Design of supply chain network (SCN) is required to optimize every factor in SCN and to provide a long-term and strategic decision-making. A mathematical model can not reflect the real world because design of SCN contains variables and stochastic factors according to status of its system. This paper presents the designing methodology of military SCN using the mathematical model and the simulation model. It constructs SCN to minimize its total costs using the Mixed Integer Programming (MIP) model. And we solve problems of a vehicle assignment and routing through adaptation of experiment parameters repeatedly in the simulation model based on the results from the MIP model. We implement each model with CPLEX and AutoMod, and experiment to reconstruct SCN when the Logistic Support Unit is restricted to support military units. The results from these experiments show that the proposed method can be used for a design of military SCN.

The Novel SCN- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore

  • Lee, Kyungmi;Kang, Dong Hyeon;Choe, Ju Eun;Yun, Mira;You, Jung-Min;Go, Min Jeong;Lee, Junseong;Jeon, Seungwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3175-3180
    • /
    • 2014
  • A potentiometric sensor based on the 1-benzyl-3-(4-nitrophenyl) thio-urea was synthesized and tested as an ionophore in PVC based membrane sensor towards $SCN^-$ ions. This membrane exhibits a linear stable response over a wide concentration range ($1.0{\times}10^{-5}$ to $1.0{\times}10^{-2}M$) with a slope of -59.2 mV/dec., a detection limit of ${\log}[SCN^-]=-5.05$, and a selectivity coefficient for thiocyanate against perchlorate anion of ${\log}K^{pot}_{SCN^-j}=-0.133$. The selectivity series of the membrane is as follows: $SCN^-$ > $ClO_4{^-}$ > $I^-$ > $NO_3{^-}$ > $HSO_3{^-}$ > $Cl^-$ > $HSO_4{^-}$ > $F^-$ > $CH_3COO^-$ > $HCO_3{^-}$ > $Br^-$ > $H_2PO_4{^-}$ > $SO{_3}^{2-}$ > $SO{_4}^{2-}$ > $CO{_3}^{2-}$. The proposed electrode showed good selectivity and a good response for the $SCN^-$ ion over a wide variety of other anions in pH 6.0 buffer solutions and has a fast response time of about < 5s. The influences of the membrane by pH, ionophore, and plasticizer were studied.