• 제목/요약/키워드: SCN.

검색결과 166건 처리시간 0.025초

거대고리 화합물을 매질로한 에멀존 액체막게에 의한 중금속이온의 분리 (Separation of the Heavy Metals by macrocycles- mediated Emulsion Liquid Membrane Systems)

  • 정오진
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.61-72
    • /
    • 1993
  • [에멀존]계에서 거대고리화합물에 의한 효과적인 수송현상을 두가지 관점에서 논의하였다. 하나는 중금속이온($Cd^{2+}$. $Pb^{2+}$$Hg^{2+}$)을 토루엔막으로 추출하는 경우.만일 금속=거대고리 화합물의 상로작용이 크다면 이 추출효과는 증가한다. 주번째 토루엔-경꼐면에서, 금속이온을 정량적으로 용리시키기 위해서는 금속이온 -Re-cieving Phase와 금속이온-거대고리화합물 사이의 상호작용에 대한 LogK의 사가 충분히 커야한다 첫번째는 거대고리 화합물의 주개원자, 치환제, 그리고 공동반경을 고려함으로써 해결된다. 이 연구의 결과들은 이론과 잘 일치하며, 시료용액의 종류는 에멀존망에 의한 금속이온의 수송현상에 영향을 준다.$SCN^-$,$1^-$$Br^-$이온과 같은 $A^-$이온을 사용할 경구, 수송순서는 $A^-$ 이온의 용매화순서의 크기에 일치하며, 용해도의 차이때문에 금속이온의 소송능력은 Receiving Phase의 화학종 농도의 크기에 영향을 받는다. 이 연구에서는 적당한 실험조건하에서 조절된 토루엔막을 사용함으로써 $Cd^{2+}$, $Pb^{2+}$, 및 $Hg^{2+}$ 이온의 혼합물로부터 각각의 단일이온들을 효과적으로 분리농축할 수 있었다. 그리고 $Cu^{2+}$,$Ni^{2+}$,$Zn^{2+}$,$Fe^{2+}$, 이온들은 중금속이온들을 분히 농축하는데 부분적으로 방해를 하였다. 그러나 알칼리 및 알칼토금속이온은 방해하지 않았다.

  • PDF

Vibrio vulnificus Cytolysin Forms Anion-selective Pores on the CPAE Cells, a Pulmonary Endothelial Cell Line

  • Choi, Bok-Hee;Park, Byung-Hyun;Kwak, Yong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.259-264
    • /
    • 2004
  • Cytolysin produced by Vibrio vulnificus has been incriminated as one of the important virulence determinants in V. vulnificus infection. Ion selectivity of cytolysin-induced pores was examined in a CPAE cell, a cell line of pulmonary endothelial cell, using inside-out patch clamp techniques. In symmetrical NaCl concentration (140 mM), intracellular or extracellular application of cytolysin formed ion-permeable pores with a single channel conductance of $37.5{\pm}4.0$ pS. The pore currents were consistently maintained after washout of cytolysin. Replacement of $Na^+$ in bath solution with monovalent ions $(K^+,\;Cs^+\;or\;TEA^+)$ or with divalent ions $(Mg^{2+},\;Ca^{2+})$ did not affect the pore currents. When the NaCl concentration in bath solution was lowered from 140 to 60 and 20 mM, the reversal potential shifted from 0 to -11.8 and -28.2 mV, respectively. The relative permeability of the cytolysin pores to anions measured at $-40\;mV\;was\;Cl^-\;=\;NO_2^-\;{\geq}\;Br^-\;=\;I^-\;> \;SCN^-\;>\;acetate^-\;>\;isethionate^-\;>\;ascorbic acid^-\;>\;EDTA^{2-},$ in descending order. The cytolysin-induced pore current was blocked by $CI^-$ channel blockers or nucleotides. These results indicate that V. vulnificus cytolysin forms anion-selective pores in CPAE cells.

폐수처리 공정중 유해음이온을 측정하기 위한 PVC 막 전극 (The PVC Membrane Electrode for Measuring Hazardous Anion in Waste Water Process)

  • 우인성;안형환
    • 한국안전학회지
    • /
    • 제10권4호
    • /
    • pp.47-59
    • /
    • 1995
  • The perchlorate, thiocyanate, and nitrate ion-selective PVC membrance electrode for measuring hazardous anion in waste water were developed by incorporating the quaternary ammonium salts as active material. Ion-selective characteristics in waste water were studied by the useful pH range, the selective coefficients to various interfering anions, and the stability of electrode potential. DBP was best as a plasticizer. The effect of the membrane thickness on the electrode characteristics was improved with decreasing the membrane thickness, but below the optimum membrane thickness the electrode exhibited an inverse trend. The electrode potential of perchlorate, thiocyanate, and nitrate electrode with TDDA, as active material, was stable within the pH range 4-11, 3-12, and 4-10 repectively. And the long-term potential stability of these electrodes were 3.0, 3.5, and 3.5 months respectively. The order of the selectivity coefficients was as shown below ; $ClO_4{^-}$ > $SCN^-$ > $I^-$ > $NO_3{^-}$ > $Br^-$ > $CN^-$ > $F^-$ > $Cl^-$ > $Ac^-$ > $H_2PO_4{^-}$, $SO_4{^-}$.

  • PDF

식도의 원발성 소세포암 (Primary Small Cell Carcinoma of The Esophagus)

  • 임수빈;박종호;백희종;조재일
    • Journal of Chest Surgery
    • /
    • 제33권9호
    • /
    • pp.734-737
    • /
    • 2000
  • Background: McKeown first described two autopsy cases of esophageal small cell carcinoma (SMC) in 1952; about 230 cases have since been reported in the literature. Small cell carcinoma has been reported to account for 0.4% to 7.6% of all esophageal malignancies. SMC of the esophagus as regarded as having a poor prognosis with frequent systemic dissemination. Choice of treatment remains controversial. Material and Method: From August 1987 to December 1998, a review of the records and histologic sections of 8 patients with primary small cell carcinoma of the esophagus seen in 11 years was undertaken. Result: Small cell carcinoma of the esophagus constituted 1.5% of all esophageal cancers. The median age was 61.5 years(range from 42 to 71 years). Seven patients were male, tumor was mainly located in the middle and lower thirds(6 cases) of the esophagus. Pure SMC is 5 cases, and mixed SMC is 3 cases. Operative procedure were as follow: transthoracic esophagectomy with thoracic or cervical reconstructon in 7 patients, transhiated esophagectomy with cervical reconstruction in one. The operative death was none. Adjuvant chemotherapy was performed in 7 patients except one who had poor general condition. Recurrence was observed in 4 patients(mediastinal LN, abdominal LN, SCN, bone). The overall median survival was 15.9 months. Only one patient survived for more than 5 years. Conclusion: We considered that esophageal SMC should be regarded as a systemic disease, and multimodality treatment including chemotherapy should be used. Surgery may be offered in selected patients to manage local disease as part of a chemotherapy based treatment program.

  • PDF

감수성 콩에서 Acetylaslicylic Acid의 콩씨스트 선충 증식의 억제 효과 (Effect of Acetylsalicylic Acid on the Reproduction of Soybean Cyst Nematode in Susceptible Soybean)

  • 김영호;;김경수
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.386-392
    • /
    • 1998
  • Reproduction of the soybean cyst nematode (SCN), Heterodera glycines Ichinohe on the susceptible soybean cultivar, Lee 74, was significantly reduced by pre-, post- and simultaneous treatments of acetylsalicylic acid (ASA, aspirin). The control efficiencies were 60%, 64% and 87% for pre-, post- and simultaneous treatments, respectively. ASA had no significant effect on the survival of 2nd stage juveniles and their penetration into the soybean root tissues, but significantly inhibited the early stage nematode growth in the roots. Syncytia were formed 2∼3 days after inoculation in the susceptible soybean without ASA treatment, characterized by dense cytoplasm and increased cellular organelles such as mitochondria and endoplasmic reticulum. The nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet entry. However, in the ASA treatments, syncytium was not formed or degenerated, depending on the root tissues. In the pre-treatments of ASA, nematode stylets did not penetrate into cells, showing callose-like cell wall thickening formed at the nematode probing sites, or retracted from the infected cells. The stylet penetration sites of syncytial cells appeared to be sealed off with fibrillar materials. With post-treatment of ASA, syncytia formed by the nematode were degenerated, characterized by degradation of syncytial cytoplasm.

  • PDF

Collaborative Sub-channel Allocation with Power Control in Small Cell Networks

  • Yang, Guang;Cao, Yewen;Wang, Deqiang;Xu, Jian;Wu, Changlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.611-627
    • /
    • 2017
  • For enhancing the coverage of wireless networks and increasing the spectrum efficiency, small cell networks (SCNs) are considered to be one of the most prospective schemes. Most of the existing literature on resource allocation among non-cooperative small cell base stations (SBSs) has widely drawn close attention and there are only a small number of the cooperative ideas in SCNs. Based on the motivation, we further investigate the cooperative approach, which is formulated as a coalition formation game with power control algorithm (CFG-PC). First, we formulate the downlink sub-channel resource allocation problem in an SCN as a coalition formation game. Pareto order and utilitarian order are applied to form coalitions respectively. Second, to achieve more availability and efficiency power assignment, we expand and solve the power control using particle swarm optimization (PSO). Finally, with our proposed algorithm, each SBS can cooperatively work and eventually converge to a stable SBS partition. As far as the transmit rate of per SBS and the system rate are concerned respectively, simulation results indicate that our proposed CFG-PC has a significant advantage, relative to a classical coalition formation algorithm and the non-cooperative case.

Diurnal gene expression of $Period2$, $Cryptochrome1$, and arylalkylamine $N$-acetyltransferase-2 in olive flounder, $Paralichthys$ $olivaceus$

  • Kim, Na-Na;Shin, Hyun-Suk;Lee, Je-Hee;Choi, Cheol-Young
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The suprachiasmatic nucleus (SCN) of the teleost hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that exposure to darkness during the day causes phase shifts in circadian rhythms. In this study, we examined the effect of exposure to darkness on the mRNA expression levels of two circadian clock genes, namely, $Period2$ ($Per2$) and $Cryptochrome1$ ($Cry1$), and the rate-limiting enzyme in melatonin synthesis, arylalkylamine $N$-acetyltransferase-2 (Aanat2), in the pineal gland of olive flounder, $Paralichthys$ $olivaceus$. The expression of these genes showed circadian variations and was significantly higher during the dark phase. These changes may be involved in the mechanism of dark-induced phase shifts. Furthermore, this study suggests that olive flounder may be a teleost model to investigate the localization and function of circadian oscillators.

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K.;Gupta, A.K.;Roh, Seung-Jae;Lee, Won-Joo;Han, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1311-1316
    • /
    • 2007
  • To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.

과염소산 이온선택성 PVC막전극 제작 (Fabrication of Perchlorate Ion Selective PVC Membrane Electrode)

  • 우인성;안형환;강안수
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.298-305
    • /
    • 1998
  • The PVC membrane electrode for measuring perchlorate ion was developed by incorporating various quaternary ammonium sallts. The effect of chemical structure, the content of active material, the kind of plasticizers, and the membrane thickness on the electrode characteristic such as the linear response range and Nernstian slope of the electrode were studied. It was obtained that the effect of the chemical structure of an active material on the electrode characteristics was improved with increasing the alkyl chain length of the quarternary ammonium salts in the ascending order of Aliquat 336P, TOAP, TDAP, and TDDAP. The optimum membrane composition was 9.09wt% of TDDAP, 30.3wt% of PVC, and 60.6wt% of plasticizer(DBP). And the optimum membrane thickness was 0.45mm at this composition. Under the above condition, the linear response range was $10^{-1}~1.2\times10^{-6}$M, and the detection limit was $5.1\times10^{-7}$M with the Nernstian slope of 57mV/decade of activity of perchlorate ion. The electrode potential was stable within the pH range from 4 to 11. The selectivity coefficient was as shown below: $SCN^->I^-NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • 제57권10호
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.