Browse > Article
http://dx.doi.org/10.1080/19768354.2011.611536

Diurnal gene expression of $Period2$, $Cryptochrome1$, and arylalkylamine $N$-acetyltransferase-2 in olive flounder, $Paralichthys$ $olivaceus$  

Kim, Na-Na (Division of Marine Environment & BioScience, Korea Maritime University)
Shin, Hyun-Suk (Division of Marine Environment & BioScience, Korea Maritime University)
Lee, Je-Hee (Department of Marine Life Sciences, Jeju National University, Jeju Special Self-Governing Province)
Choi, Cheol-Young (Division of Marine Environment & BioScience, Korea Maritime University)
Publication Information
Animal cells and systems / v.16, no.1, 2012 , pp. 27-33 More about this Journal
Abstract
The suprachiasmatic nucleus (SCN) of the teleost hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that exposure to darkness during the day causes phase shifts in circadian rhythms. In this study, we examined the effect of exposure to darkness on the mRNA expression levels of two circadian clock genes, namely, $Period2$ ($Per2$) and $Cryptochrome1$ ($Cry1$), and the rate-limiting enzyme in melatonin synthesis, arylalkylamine $N$-acetyltransferase-2 (Aanat2), in the pineal gland of olive flounder, $Paralichthys$ $olivaceus$. The expression of these genes showed circadian variations and was significantly higher during the dark phase. These changes may be involved in the mechanism of dark-induced phase shifts. Furthermore, this study suggests that olive flounder may be a teleost model to investigate the localization and function of circadian oscillators.
Keywords
Period2; Cryptochrome1; arylalkylamine N-acetyltransferase-2; melatonin; circadian clock;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. 2005. Circadian clocks, clock networks, arylalkylamine N-Acetyltransferase, and melatonin in the retina. Prog Retin Eye Res. 24:433-456.   DOI
2 Kim SM, Lee HJ, Im WB. 2002. Circadian rhythms of melatonin, thyroid-stimulating hormone and body temperature: relationships among those rhythms and effect of sleep-wake cycle. Korean J Biol Sci. 6:239-245.   DOI
3 King DP, Takahashi JS. 2000. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 23:713-742.   DOI
4 Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V, Falcon J, Cahill GM, Cassone VM, Baler R. 1997. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res. 52:307-357.
5 Kostal V, Zavodska R, Denlinger D. 2009. Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis.J Insect Physiol. 55:408-414.   DOI
6 Kubo Y, Takeuchi T, Okano K, Okano1 T. 2010. Cryptochrome genes are highly expressed in the ovary of the african clawed frog, Xenopus tropicalis. PLoS One. 5:e9273-e9280.   DOI
7 Meijer JH, Rietveld WJ. 1989. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev. 69:671-707.   DOI
8 Migaud H, Taylor JF, Taranger GL, Davie A, Cerda-Reverter JM, Carrillo M, Hansen T, Bromage NR. 2006. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J Pineal Res. 41:42-52.   DOI
9 Okano S, Kannno SI, Takao M, Eker APM, Isono K, Tsukahara Y, Yasui A. 1999. A putative blue-light receptor from Drosophila melanogaster. Photochem Photobiol. 69:108-113.   DOI
10 Park JG, Park YJ, Sugama N, Kim SJ, Takemura A. 2007. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J Comp Physiol A. 193:403-411.   DOI
11 Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO. 2008. Novel function for period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Res 1223:11-24.   DOI
12 Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 38:701-710.   DOI
13 Renuka K, Joshi BN. 2010. Melatonin-induced changes in ovarian function in the freshwater fish Channa punctatus (bloch) held in long days and continuous light. Gen Comp Endocrinol. 165:42-46.   DOI
14 Shearman LP, Zylka MJ, Weaver DR, Kolakowski LFJ, Reppert SM. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 19:1261-1269.   DOI
15 Chong NW, Chaurasia SS, Haque R, Klein DC, Iuvone PM. 2003. Temporal-spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J Neurochem. 85:851-860.   DOI
16 Cahill GM. 2002. Clock mechanisms in zebrafish. Cell Tissue Res. 309:27-34.   DOI
17 Cermakian N, Pando MP, Thompson CL, Pinchak AB, Selby CP, Gutierrez L, Wells DE, Cahill GM, Sancar A, Sassone-Corsi P. 2002. Light Induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr Biol. 12:844-848.   DOI
18 Cheng Y, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou Q. 2002. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 417:405-410.   DOI
19 Coon SL, Begay V, Deurloo D, Falcon J, Klein DC. 1999. Two arylalkylamine N-acetyltransferase genes mediate melatonin synthesis in fish. J Biol Chem. 274:9076-9082.   DOI
20 Delaunay F, Thisse C, Thisse B, Laudet V. 2003. Differential regulation of Period 2 and Period 3 expression during development of the zebrafish circadian clock. Gen Expr Patterns. 3:319-324.   DOI
21 Albrecht U, Sun ZS, Eichele G, Lee CC. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 91:1055-1064.   DOI
22 Appelbaum L, Vallone D, Anzulovich A, Ziv L, Tom M, Foulkes NS, Gothilf Y. 2006. Zebrafish arylalkylamine- N-acetyltransferase genes-targets for regulation of the circadian clock. J Mol Endocrinol. 36:337-347.   DOI
23 Falcon J. 1999. Cellular circadian clocks in the pineal. Prog Neurobiol. 58:121-162.   DOI
24 Fu Z, Inaba M, Noguchi T, Kato H. 2002. Molecular cloning and circadian regulation of cryptochrome genes in Japanese quail (Coturnix coturnix). J Biol Rhythms. 17:14-27.   DOI
25 Falcon J, Molina-Borja M, Collin J-P, Oaknin S. 1996. Agerelated changes in 2-[125I]-iodomelatonin binding sites in the brain of sea bass breams (Sparus aurata L). Fish Physiol Biochem. 15:401-411.   DOI
26 Falcon J, Galarneau KM, Weller JL, Ron B, Chen G, Coon SL, Klein DC. 2001. Regulation of arylalkylamine Nacetyltransferase-2 (AANAT2, EC 23187) in the fish pineal organ: evidence for a role of proteasomal proteolysis. Endocrinology. 142:1804-1813.   DOI
27 Falcon J, Migaud H, Munoz-Cueto JA, Carrillo M. 2010. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol. 165:469-482.   DOI
28 Fukuhara C, Liu C, Ivanova TN, Chan GCK, Storm DR, Iuvone PM, Tosini G. 2004. Gating of the cAMP signaling cascade and melatonin synthesis by the circadian clock in mammalian retina. J Neurosci. 24:1803-1811.   DOI
29 Hickman AB, Namboodiri MA, Klein DC, Dyda F. 1999. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 18 A resolution with a bisubstrate analog. Cell 97:361-369.   DOI
30 Iigo M, Furukawa K, Tabata M, Aida K. 2003. Circadian variations of melatonin binding sites in the goldfish brain. Neurosci Lett. 347:49-52.   DOI
31 Simonneaux V, Ribelayga C. 2003. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, neuropeptides and other pineal transmitters. Pharmacol Rev. 55:325-395.   DOI
32 Vallone D, Gondi SB, Whitmore D, Foulkes NS. 2004. E-box function in a period gene repressed by light. Proc Natl Acad Sci USA. 101:4106-4111.   DOI
33 Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. 2005. Functional development of the zebrafish pineal gland: light-induced expression of Period2 is required for onset of the circadian clock. J Neuroendocrinol. 17:314-320.   DOI
34 van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 398:627-30.   DOI
35 Velarde E, Haqueb R, Iuvoneb PM, Azpeletaa C, Alonso-Gomeza AL, Delgadoa MJ. 2009. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of Period and Cryptochrome transcripts in retina, liver, and gut. J Biol Rhythms. 24:104-113.   DOI
36 Vera LM, Davie A, Taypor JF, Migaud H. 2010. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen Comp Endocrinol. 165:25-33.   DOI