• Title/Summary/Keyword: SCI-PCM SCRF

Search Result 1, Processing Time 0.019 seconds

Investigation of the Protonated State of HIV-1 Protease Active Site

  • Nam, Ky-Youb;Chang, Byung-Ha;Han, Cheol-Kyu;Ahn, Soon-Kil;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.817-823
    • /
    • 2003
  • We have performed ab initio calculation on the active site of HIV-1 protease. The FEP method was used to determine the binding free energy of four different of protonated states of HIV-1 protease with inhibitor. The structure of the active site and hole structure was taken from the X-ray crystallographic coordinates of the C₂ symmetric inhibitor A74704 protease bound. The active site was modeled with the fragment molecules of binding pocket, acetic acid/ acetate anion (Asp25, Asp125), formamide (amide bond of Thr26/Gly27, Thr126/ Gly127), and methanol as inhibitor fragment. All possibly protonated states of the active site were considered, which were diprotonated state (0, 0), monoprotonated (-1, 0),(0, -1) and diunprotonated state (-1, -1). Once the binding energy Debind, of each model was calculated, more probabilistic protonated states can be proposed from binding energy. From ab-initio results, the FEP simulations were performed for the three following mutations: Ⅰ) Asp25 … Asp125 → AspH25 … Asp125, ⅱ) Asp25 … Asp125 → Asp25 … AspH125, ⅲ) AspH25 … Asp125 → AspH25 … AspH125. The free energy difference between the four states gives the information of the more realistic protonated state of active site aspartic acid. These results provide a theoretical prediction of the protonation state of the catalytic aspartic residues for A74707 complex, and may be useful for the evaluation of potential therapeutic targets.