• Title/Summary/Keyword: SCH-23390

Search Result 18, Processing Time 0.027 seconds

Roles of Dopamine in Proliferation of Gastric-Cancer Cells (도파민의 위암세포증식에서의 역할)

  • Jeong, Hee-Jun;Park, Ki-Ho;Chae, Hyun-Dong
    • Journal of Gastric Cancer
    • /
    • v.6 no.3
    • /
    • pp.132-138
    • /
    • 2006
  • Purpose: Dopamine is a neurotransmitter, but in the GIT, the roles of dopamine are a regulator of epithelial cell proliferation, an endogenous protective factor, and a regulator of stomach cancer cell proliferation. By using two different gastric-cancer cell lines, we assessed the effects of dopamine and dopamine receptors on the proliferation of human gastric-cancer cells. Materials and Methods: To assess the effects of dopamine and dopamine receptors on the proliferation of human gastric-cancer cells, we investigated cell proliferation and the expression of D1, D2L, and D2S receptor in two gastric-cancer cell lines, SNU 601 and KCU-C2. The effects of dopamine and dopamine receptors on the level of the cell proliferation were determined by staining with an A/H/E (acridine orange, hoechst and ethidium bromide) mixture. Results: After dopamine treatment, the cell viability was significantly decreased in SNU 601 cells (P<0.05) where the D2L receptor was absent, but not in KCU-C2 cells. After treatment with raclopride, a D2 receptor antagonist, dopamine-dose-dependent inhibition of cell proliferation was observed in SNU 601 cells (P<0.05). After treatment with SCH 23390, a D1 receptor antagonist, dopamine significantly increased ceil proliferation in KCU-C2 cells (P<0.05), but inhibited ceil proliferation in SNU 601 cells (no D2L receptor). Conclusion: The dopamine signal via the D1 or the D2S receptor inhibited proliferation of gastric-cancer cells, but that via the D2L receptor increased proliferation. These results suggest that the regulatory effects of dopamine in the gastric-cancer cell proliferation may be controlled by using dopamine receptors.

  • PDF

N-(4-[$^{18}F$]Fluoromethylbenzyl)spiperone : A Selective Radiotracer for In Vivo Studies of Dopamine $D_2$ Receptors (N-(4-[$^{18}F$Fluoromethylbenzyl)spiperone : 유력한 도파민 $D_2$ 수용체 선택성 방사성리간드)

  • Kim, Sang-Eun;Choe, Yearn-Seong;Chi, Dae-Yoon;Lee, Kyung-Han;Choi, Yong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.421-426
    • /
    • 1997
  • We evaluated the in vivo kinetics, distribution, and pharmacology of N-(4-[$^{18}F$]fluoromethylbenzyl)spiperone ([$^{18}F$]FMBS), a newly developed derivative of spiperone, as a potentially more selective radiotracer for the dopamine (DA) $D_2$ receptors. Mice received 1.9-3.7 MBq (1.8-3.6 nmol/kg) of [$^{18}F$]FMBS by tail vein injection. The time course and regional distribution of the tracer in brain were assessed. Blocking studies were carried out by intravenously preinjecting DA $D_2$ receptor blockers (spiperone, butaclamol) as well as drugs with high affinity for DA $D_1$ (SCH 23390), DA transporter (GBR 12909), and serotonin $S_2$ ($5-HT_2$) (ketanserin) sites. After injection of the tracer, the radioactivity in striatum increased steadily over time, resulting in a striatal-to-cerebellar ratio of 4.8 at 120 min postinjection. By contrast, the radioactivity in cerebellum, frontal cortex, and remaining cortex washed out rapidly. Preinjection of unlabeled FMBS (1 mg/kg) and spiperone (1 mg/kg) reduced [$^{18}F$]FMBS striatal-to-cerebellar ratio by 41% and 80%, respectively. (+)-Butaclamol (1 mg/kg) blocked 80% of the striatal [$^{18}F$]FMBS binding, while (-)-butaclamol (1 mg/kg) did not. Preinjection of SCH 23390 (1 mg/kg) and GBR 12909 (5 mg/kg) had no significant effect on [$^{18}F$]FMBS binding. Ketanserin (1 mg/kg), a ligand for the $5-HT_2$ receptors, did not cause significant inhibition either in striatum, in frontal cortex, or the remaining cortex. The results demonstrate that [$^{18}F$]FMBS labels DA $D_2$ receptors selectively in vivo in the mouse brain. It may hold promise as a selective radiotracer for studying DA $D_2$ receptors in vivo by PET.

  • PDF

Gap Junction Contributions to the Goldfish Electroretinogram at the Photopic Illumination Level

  • Kim, Doh-Yeon;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.219-224
    • /
    • 2012
  • Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following $N^G$-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.

EFFECTS OF ACUTE AND SUBACUTE ADMINISTRATION OF COCAINE ON DOPAMINERGIC SYSTEMS IN THE RAT STRIATUM

  • Lim, D.K.;Ho, I.K.
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.75-88
    • /
    • 1990
  • The characteristics of dopamine uptake, D-1 and D-2 receptors after acute and subacute cocaine administration were determind in striatum from WKY and SHR. Cocaine was administered either acutely (40 mg/kg, s.c.) or twice daily (20 mg/kg, s.c.) for 3 and 7 days in 9-wk old WKY and SHR. Rats were sacrificed 30 min, 2 or 24 h after the single injection and 18 h after the last administration to the subacutely treated group. The changes in dopamine uptake, dopamine uptake sites, D-1 and D-2 receptors were determined using $(^3H)$dopamine, $(^3H)$-GBR-12935, $(^3H)$SCH-23390 and $(^3H)$sulpiride, respectively. In acutely treated rats, significant increases in $V_{max}$of dopamine uptake were observed 30 min after the cocanine injection in both strains without changes in $K_m$ values. The in vitro $IC_{50}$for cocaine was significantly decreased 30 min in WKY and 2 h in SHR. However, that for in vitro GBR-12909 was significantly increased 30 min and 2 h in both strains. Also densities of $(^3H)$-GBR-12935 binding sites were significantly increased 30 min and 2 h without changes in their $K_d$. Significant increases in D-2 receptor density were observed 30 min, 2 or 24 h after acute injection in both strains without changes in their affinities. The density of D-1 receptor was significantly decreased 30 min after the injection in WKY, but not in SHR. In subacutely treated rats, a significant increase in $K_m$ of dopamine uptake was observed in 7-day treated SHR. The in vitro $IC_{50}$fot GBR-12909 was significantly increased in 3-day treated WKY. The density of D-1 receptors was significantly increased in 3- and 7-day treated WKY, but not in SHR. The affinity of both binding sites remained unchanged. The results suggest that cocanine administration alters dopamine uptake, characteristics of dopamine uptake sites and dopamine receptor binding characteristics in rat brain. Furthermore, D-1 and D-2 dopamine receptors appear to be differently regulated.

  • PDF

Effects of the dopaminergic system on release of TSH and thyroid hormone in rats (랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향)

  • Lee, Sang-woo;Kim, Jin-sang;Han, Jeong-hee
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Effects of dopamine on angiotensin II-induced stimulation of Na+ uptake in primary cultured rabbit renal proximal tubule cells (초대배양한 신장 근위세뇨관세포에서 ANG II의 Na+ uptake 촉진효과에 대한 dopamine의 효과)

  • Koh, Hyun-ju;Park, Soo-hyun;Han, Ho-jae
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.518-524
    • /
    • 1998
  • 신장 근위세뇨관세포들은 사구체에서 여과된 물질의 재흡수, 분비 및 대사에 관여하는 여러 호르몬들의 수용체들을 가지고 있다. 이들중에서 dopamine(DA)과 angiotensin II(ANG II)가 $Na^{+}/H^{+}$ 상호운반계 조절에 중요한 역할을 하고 있다. 본 연구는 초대배양한 토끼 신장 근위세뇨관세포의 $Na^+$ uptake에 있어서 DA과 ANG II의 상호관계를 알아보고자 실시하였다. DA은 농도의존적으로 $Na^+$ uptake를 유의성 있게 억제하였다($10^{-6}M$ ; $83.2{\pm}7.2%$, $10^{-3}M$ ; $67.2{\pm}3.8%$ vs. control)(p<0.05). $DA_1$ 작동제(SKF 38393, $10^{-6}M$)는 대조군의 $81.4{\pm}6.7%$ 까지 $Na^+$ uptake를 유의성 있게 억제하였으나(p < 0.05) $DA_2$ 작동제는 영향을 미치지 않았다. $DA_1$ 길항제(SCH 23390, $10^{-6}M$)에 의해 DA의 $Na^+$ uptake 억제효과는 차단되었으나 $DA_2$ 길항제(spiperone, $10^{-6}M$)에 의해서는 영향을 받지 않았다. DA과 대조적으로 $10^{-11}M$ ANG II는 $AT_1$ 수용체를 통하여 대조군의 $120.7{\pm}4.9%$까지 $Na^+$ uptake를 유의성 있게 촉진하였다. (p < 0.05). DA 및 $10^{-11}M$ ANG II를 병합처리하였을 때 DA은 농도의존적으로 ANG II에 유도된 $Na^+$ uptake 촉진효과를 유의성 있게 차단하였다(p<0.05). 한편 ANG II에 의해 유도된 $Na^+$ uptake촉진작용은 $DA_1$ 또는 $DA_2$ 작동제에 의해 차단되었으나 DA에 의한 차단 효과는 $DA_1$$DA_2$ 길항제를 병합처리하였을 때만 반전되었다. 결론적으로 DA은 $DA_1$ 수용체를 통하여 $Na^+$ uptake를 억제하였으나 ANG II에 의한 $Na^+$ uptake 촉진작용의 억제에는 $DA_1$$DA_2$ 수용체 모두가 관여하였다.

  • PDF

Korean Red Ginseng attenuates anxiety-like behavior during ethanol withdrawal in rats

  • Zhao, ZhengLin;Kim, Young Woo;Wu, YiYan;Zhang, Jie;Lee, Ju-Hee;Li, XiaoHua;Cho, Il Je;Park, Sang Mi;Jung, Dae Hwa;Yang, Chae Ha;Kim, Sang Chan;Zhao, RongJie
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.256-263
    • /
    • 2014
  • Background: Korean Red Ginseng (KRG) is known to have antianxiety properties. This study was conducted to investigate the anxiolytic effects of KRG extract (KRGE) during ethanol withdrawal (EW) and the involvement of the mesoamygdaloid dopamine (DA) system in it. Methods: Rats were treated with 3 g/kg/d of ethanol for 28 d, and subjected to 3 d of withdrawal. During EW, KRGE (20 mg/kg/d or 60 mg/kg/d, p.o.) was given to rats once/d for 3 d. Thirty min after the final dose of KRGE, anxiety-like behavior was evaluated in an elevated plus maze (EPM), and plasma corticosterone (CORT) levels were determined by a radioimmunoassay (RIA). In addition, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) in the central nucleus of the amygdala (CeA) were also measured by high performance liquid chromatography (HPLC). Results: The EPM test and RIA revealed KRGE inhibited anxiety-like behavior and the over secretion of plasma CORT during EW. Furthermore, the behavioral effect was blocked by a selective DA D2 receptor (D2R) antagonist (eticlopride) but not by a selective DA D1 receptor (D1R) antagonist (SCH23390). HPLC analyses showed KRGE reversed EW-induced decreases of DA and DOPAC in a dose-dependent way. Additionally, Western blotting and real-time polymerase chain reaction (PCR) assays showed that KRGE prevented the EW-induced reductions in tyrosine hydroxylase (TH) protein expression in the CeA and TH mRNA expression in the ventral tegmental area (VTA). Conclusion: These results suggest that KRGE has anxiolytic effects during EW by improving the mesoamygdaloid DA system.