• Title/Summary/Keyword: SCG

Search Result 63, Processing Time 0.024 seconds

SCG10, a Microtubule-Destabilizing Factor, Interacts Directly with Kinesin Superfamily KIF1A Protein in Brain (Kinesin superfamily KIF1A와 결합하는 미세소관 불안정화 단백질 SCG10의 규명)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.859-865
    • /
    • 2009
  • Microtubules, a major cytoskeleton, form parallel arrays in the axon and are oriented with their plus ends toward the cell periphery. Kinesin superfamily proteins (KIFs) are the molecular motors acting in the microtubule-based motilities of organelles in cells. Here, we used the yeast two-hybrid system to identify the protein that interacts with the coiled-coil domain of KIF1A and found a specific interaction with microtubule-destabilizing factor SCG10. SCG10 bound to the amino acid residues between 400 and 820 of KIF1A, but not to other KIFs in the yeast two-hybrid assay. The coiled-coil domain of SCG10 is essential for interaction with KIF1A. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SCG10 specifically co-immunoprecipitated KIF1A associated with SCG10 from mouse brain extracts. These results suggest that KIF1A motor protein transports SCG10-containing vesicles along microtubules in neurons.

Enhancement of Growth and Bioactivity of Pleurotus eryngii Mycelia by Spent Coffee Ground (커피박 첨가에 의한 새송이버섯 균사체의 생육 및 생리활성 증가)

  • Choi, Jang-Won;Shin, Dong-Il;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.157-163
    • /
    • 2012
  • Pleurotus eryngii. one of the most popular edible mushrooms, has been well known for its biological activities such as antioxidation, antitumor and immune modulation. Spent coffee ground(SCG) that is a waste product from the coffee industry has been continuously investigated for its reutilization. In this study, SCG was added to the fungal cultuvation medium and analyzed for its effect on the growth and physiological activity of P. eryngii mycelia. It was clearly demonstrated that SCG could accelarate mycelia growth. 1% SCG culture was very notable by showing 2.5-fold higher dry cell weight comapred to the control culture, which suggested SCG as an excellent activator for the growth of P. eryngii mycelia. By the addition of SCG, polyphenol content was increased by two fold but there was no change in polysaccharide content. In the analysis of DPPH scavenging activity, SCG was determined as a valuable source in order to significantly increase the antioxidative activity of the mycelium.

Hierarchical VPN Configuration Method using SCG(Secure Communication Group) and Its Characteristics (SCG(Secure Communication Group)을 이용한 계층적 VPN(Virtual Private Network) 구성 및 특성)

  • Park, Chan-Woo;Han, Chi-Moon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.9-18
    • /
    • 2001
  • Currently most of VPNs within internet has only capability to protect cooperate data. Recently, various types of VPNs are being studied based on the concept of SCG(Secure Communication Group). This paper analyses the problems of path-definition method and area-definition method of VPNs using SCG technology, and discusses the possible models among VPNs using SCG technology. This paper proposes the hierarchal VPN configuration method using SCG number and internet based area definition method, and analyze the characteristics of the proposed VPN model on the point of the authentication frequency and the number of managements keys.

  • PDF

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

Biodegradable PLA-based Biocomposites with Spent Coffee Grounds as Degradation Accelerator: Hydrolytic Degradation and Characterization Research

  • Kim, Youngsan;Lim, Daekyu;Kwon, Sangwoo;Jang, Hyunho;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The goal of this study was to evaluate the effect of spent coffee grounds (SCG) biofiller on the morphological, thermal, mechanical and hydrolytic degradation characteristics of poly(lactic acid) (PLA) based biocomposites. The PLA-based biocomposite films were fabricated by using a high-viscosity kneading and hot-pressing machine. The PLA/SCG biocomposites were analyzed with SEM, DSC, TGA, UTM and hydrolytic degradation test. Aggregation in the PLA matrix is a result of increasing SCG concentrations. In the thermal properties, it was described that the cold crystallization temperature (Tcc) decreased as SCG was added to PLA. When SCG was incorporated to PLA, the degradation onset temperature (Tonset) revealed a diminish. The elastic modulus increased while tensile strength of PLA diminished as SCG was applied. Through hydrolysis analysis, the decomposition of PLA was accelerated with the addition of SCG. This research confirmed the possibility of devloping an eco-friendly packaging material with high degradability as SCG hasten the breakdown of PLA.

Design of Superconducting AC Generator (초전도 교류발전기의 설계)

  • 한송엽;차귀수;한동철;신효철;한성진;배동진;원영진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.142-148
    • /
    • 1990
  • This paper deals with the desing method of Superconducting AC Generator (SCG). The establishment of design principle and design procedure of SCG are included in this study. Electric characteristics of SCG, such as synchronous reactance and sub-sub-transient reactance, are specified first as constraints and the size of SCG is calculated. Synchronous reactance and sub-sub-transient reactance are important factors because they determine the steady state and transient characteristics of SCG, respectively. A 20KVA SCG with double-shielded single-rotor is chosen for the case study. The design procedure proposed in this papar will also be applicable to large scale generators.

Magnetic Shielding Characteristics of the Slitted Electrothermal Shield (틈새를 낸 열전자 차폐막의 자기차폐특성)

  • 이홍배;배동진;김석환;원영진;한성진;차귀수;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.562-566
    • /
    • 1991
  • Many research and development activities have found that Superconducting Generators (SCG) have advantages such as high efficiency, light weight, small size, large unit size and good steady-state stability over conventional ones. However the transient stability of SCG is comparable to that of conventional ones. One way to improve the transient stability of SCG is to apply quick-response excitation system to the SCG. For this purpose, an SCG with an electrothermal shield of short electric time constants should be developed. In this paper, a new electrothermal shield, called slitted electrothermal shield(SES), is proposed. The SES can easily transmit radiated heat into the ends of the shield as in the conventional electrothermal shields(CES) and can easily pass magnetic flux produced by armature and field windings. By finite element analysis and experimental test, the slitting effects of SES on magnetic shielding are compared. Good agreement is obtained between simulated and test results.

  • PDF

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su;Woo, Duk Gam;Kim, Tae Han
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.470-478
    • /
    • 2020
  • Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

A Study on Utilization of Waste Organic Matter for Slope Protection (비탈면보호를 위한 폐유기물질의 활용성에 대한 연구)

  • Park, Kyungsik;Hwang, Insang;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Coffee consumption in Korea has been currently growing every year, and as a result, approximately 0.2 million tons of Spent Coffee Grounds (SCG) are being created every year. SCG, which is waste organic material, is often classified as food waste and an annual amount of 0.27 million ton is discarded while containing moisture and provoking serious environmental issue. Physico-chemical characteristics of SCG were analyzed in this study and medium and long-term growth experiments were conducted in order to evaluate its utilization potential. According to the experiment results, mixing SCG into the previous base material resulted in accelerated germination and growth in the mid-term compared to previous base material alone, despite slower germination or growth in early stage. Especially, it showed lower withering rate and decrease in various symptoms that are caused by nutrition shortage in case of discontinued sprinkling, etc., compared to the previous base material. Hence, while SCG has a feature of hindering early development due to its feature of waste organic material that is rich in nitrogen, its benefit for long-term growth coming its moisturizing ability and supply of organic matter was confirmed in the study. On balance, SCG is believed to be a material that can replace or complement the previous base materials.