• Title/Summary/Keyword: SCC model

Search Result 93, Processing Time 0.025 seconds

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.135-147
    • /
    • 2020
  • A methodology for evaluation of mechanical and thermal effects of localized non-axisymmetric oxidation in zircaloy claddings on LWR fuel reliability is proposed. To this end, the basic capabilities of the FALCON fuel behaviour code are used. Examples of methodology application to adjustment of selected operational limits for modern BWR fuel rods, to capture effects of the excess local oxidation, are presented. Specifically, the limiting rod internal pressure for the onset of cladding lift-off is reduced, depending on initial excess oxidation spot sizes. Also, the power limits for Anticipated Operational Occurrences are adjusted, to preclude fuel melting and cladding failure due to PCMI and PCI-SCC in the affected fuel rods.

Microstructural and mechanical characteristics of self-compacting concrete with waste rubber

  • Hadzima-Nyarko, Marijana;Nyarko, Karlo E.;Djikanovic, Daniela;Brankovic, Goran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • Due to the increasing environmental pollution caused by scrap tires, a solution is being sought to recycle and use them in a field of civil engineering, i.e., construction. This paper will provide a brief overview of previous researches that give detailed information on the advantages and disadvantages, considering the microstructural and mechanical characteristics of self-compacting concrete, when waste tire rubber as an aggregate is added. With this aim, a database of 144 different mixtures of self-compacting concrete with partial substitute of natural aggregate with recycled tire rubber (self-compacting rubberized concrete, SCRC) provided by various researchers was created. In this study we show that Gaussian process regression (GPR) modelling is an appropriate method for predicting compressive strength of SCC with recycled tire rubber particles and is in accordance with the results displayed by SEM images.

Eccentric strength and design of RC columns strengthened with SCC filled steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.833-852
    • /
    • 2015
  • Self-compacting Concrete Filled steel Tubes (SCFT), which combines the advantages of steel and concrete materials, can be applied to strengthen the RC columns. In order to investigate the eccentric loading behavior of the strengthened columns, this paper presents an experimental and numerical investigation on them. The experimental results showed that the use of SCFT is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. And the performance of strengthened columns is significantly affected by four parameters: column section type (circular and square), wall thickness of the steel tube, designed strength grade of strengthening concrete and initial eccentricity. In the numerical program, a generic fiber element model which takes in account the effect of confinement is developed to predict the behavior of the strengthened columns subjected to eccentric loading. After the fiber element analysis was verified against experimental results, a simple design formula based on the model is proposed to calculate the ultimate eccentric strength. Calibration of the calculated results against the test results shows that the design formula closely estimates the ultimate capacities of the eccentrically compressed strengthened columns by 5%.

A Study on the Robust Compensator of An Inverted Pendulum Using $H_{\infty}$ Optimal Control Theory ($H_{\infty}$ 최적제어 이론을 이용한 도립진자의 견실한 보상기 설계에 관한 연구)

  • 김대현;정규홍;이석재;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.213-218
    • /
    • 1991
  • A new model which contains the dynamics of the motor system and the kinematics of the timing belt system is derived for an inverted pendulum system in FAPA Lab. Generalized standard compensator configuration(SCC) which contains the variable design parameters Kl, K2, .., K5 is proposed so that any desired design specification can be achieved. The robust controller which has robust property against the influence of sensor noise, system parameter variation and model uncertainty is designed minimizing the H$_{\infty}$-norm of transfer function from exogenous input to controlled output. The method of solving the two Riccati equations in state space and determining the controller uses on iteration method where the unique stabilizing solution to two algebraic Riccati equation must be positive definite and the spectral radius of their product less than .gamma.$^{2}$. Some cases are derived by varying the design parameter for simulation on a digital computer and experimenting the H$_{\infty}$- controller on an analog computer. The design parameters of controller which satisfies the desired control specification is selected on the basis of the simulation result and experimenting. The reasonableness and validity of the simulation and the robustness of the controller is established.d.

  • PDF

Feasibility Study on Similarity Principle in Discrete Element Analysis (이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토)

  • Yun, Taeyoung;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

Multiagent Enabled Modeling and Implementation of SCM (멀티에이전트 기반 SCM 모델링 및 구현)

  • Kim Tae Woon;Yang Seong Min;Seo Dae Hee
    • The Journal of Information Systems
    • /
    • v.12 no.2
    • /
    • pp.57-72
    • /
    • 2003
  • The purpose of this paper is to propose the modeling of multiagent based SCM and implement the prototype in the Internet environment. SCM process follows the supply chain operations reference (SCOR) model which has been suggested by Supply Chain Counsil. SCOR model has been positioned to become the industry standard for describing and improving operational process in SCM. Five basic processes, plan, source, matte, deliver and return are defined in the SCOR model, through which a company establishes its supply chain competitive objectives. A supply chain is a world wide network of suppliers, factories, warehouses, distribution centers and retailers through which raw materials are acquired, transformed or manufactured and delivered to customers by autonomous or semiautonomous process. With the pressure from the higher standard of customer compliance, a frequent model change, product complexity and globalization, the combination of supply chain process with an advanced infrastructure in terms of multiagent systems have been highly required. Since SCM is fundamentally concerned with coherence among multiple decision makers, a multiagent framework based on explicit communication between constituent agents such as suppliers, manufacturers, and distributors is a natural choice. Multiagent framework is defined to perform different activities within a supply chain. Dynamic and changing functions of supply chain can be dealt with multi-agent by cooperating with other agents. In the areas of inventory management, remote diagnostics, communications with field workers, order fulfillment including tracking and monitoring, stock visibility, real-time shop floor data collection, asset tracking and warehousing, customer-centric supply chain can be applied and implemented utilizing multiagent. In this paper, for the order processing event between the buyer and seller relationship, multiagent were defined corresponding to the SCOR process. A prototype system was developed and implemented on the actual TCP/IP environment for the purchase order processing event. The implementation result assures that multiagent based SCM enhances the speed, visibility, proactiveness and responsiveness of activities in the supply chain.

  • PDF

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material (Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가)

  • Kim, Jong Min;Kim, Woo Gon;Kim, Min Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.