• Title/Summary/Keyword: SCARA Robot

Search Result 184, Processing Time 0.024 seconds

Optimal Trajectory Control for Robort Manipulators using Evolution Strategy and Fuzzy Logic

  • 박진현;김현식;최영규
    • ICROS
    • /
    • v.1 no.1
    • /
    • pp.16-16
    • /
    • 1995
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

Optimal Trajectory Control for RobortManipulators using Evolution Strategy and Fuzzy Logic

  • Park, Jin-Hyun;Kim, Hyun-Sik;Park, Young-Kiu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 1999
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

  • PDF

Robot motion planning for time-varying obstacle avoidance using view-time concept ('관측 시간'개념을 이용한 로보트의 시변 장애물 회피 동작 계획)

  • 고낙용;이범희;고명삼;남윤석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1040-1045
    • /
    • 1991
  • An approach to time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in Cartesian space and in joint space. To deal with the time-varying obstacles, view-time is introduced. A view-time is the time interval viewing the time-varying obstacles to model equivalent stationary obstacles. For the analysis of the properties of the view-time, avoidability measure is defined as a measure of easiness for a robot to avoid obstacles. Based on the properties, a motion planning strategy to avoid time-varying obstacles is derived. An application of the strategy to the collision-free motion planning of two SCARA robots and the simulation on the application are given.

  • PDF

Design and implementationof a fuzzy tuning discrete-time repetitive controller for a direct drive robot (직접구동형 로봇에 대한 퍼지 튜닝 이산시간 반복제어기의 설계 및 실시간 구현)

  • 김성현;김진현;안현식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.76-85
    • /
    • 1998
  • In this paper, a fuzzy tuning method of a control gain in the discrete-time repetitive controller is proposed for precise tracking control of a system whose reference signal is repetitive. The control gain is modified by fuzzy rules which use the magnitude and the variation ofthe maximum output error in the previous repetitive period. The proposed method is applied to a direct drive 2-axis SCARA-type robot and, it is illustratedby computer simulations and real-time experimentation that better performance can be obtained that the fixed gain-based repetitive controller.

  • PDF

Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계)

  • 최근국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on Adaptive-Sliding Mode Control of SCARA Robot (스카라로보트의 적응 -슬라이딩모드 제어에 관한 연구)

  • 윤대식;차보남;김경년;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.330-335
    • /
    • 1994
  • In this paper, adaprive control and sliding mode control are combined to implement the proposed adaptive sliding mode control(ASMC) algorithm which is new approach to the control of industrial robot manipulator with external disturbances and parameter uncertainties. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The contribution of this method is that the parameters of the sliding surface are replaced by time varying parameters whose are calculated by an adaptation algorithm, which forces the errors to follow the behavior of a reference error model. Simulation results show that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control. Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications.

  • PDF

A Pointwise PD-optimal Control of Robotic Manipulators for Continuous Path with Bounded Inputs (제한된 입력하에서 로보트 매니플레이터의 Pointwise PD 최적 연속경로 제어방)

  • 현웅근;서일홍;서병설;임준홍;김경기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.186-193
    • /
    • 1988
  • A pointwise PD-optimal control method is proposed for the continuous path control of robot manipulators with bounded inputs. The controller employs the desired acceleration plus PD (proportional and derivative) actions in the Cartesian space. The gain parameters of the controller are adjusted so that the Euclidean norm of the deviation between the actual and desired accelerations is minimized subject to the constraints of bounded input torques and the system guarantees negative feedback. To show the Validities of the proposed mithods, computer simulations are performed for a SCARA type robot.

  • PDF

Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A study of Robot Manipulator's Coordinating Control (로보트 매니퓰레이터의 좌표제어에 관한 연구)

  • Kwon, Hyuk-Jin;Moon, Dong-Wook;Suh, Jae-Kun;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1234-1236
    • /
    • 1996
  • In this paper, the trajectory needed to be tracked by the manipulator was defined in a new plot differently from conventional methods. And the trajectory provides Solution directly related to coordinates of output variables from the plant. So, it overcomes nonlinearity between joint and Cartesian coordinates in movement mode and it makes use of inverse Kinematics unnecessary, which was obstacle for real-time control. The 2-axis SCARA robot was modelled and simulation was performed to validate in this paper. And it proved this has better performance in rapidity and decrease of position-error, compared to the conventional FLCs.

  • PDF

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF