• Title/Summary/Keyword: SC Wall

Search Result 99, Processing Time 0.018 seconds

Proposal for Optimal Outrigger Location Considering Stiffness of Frame (프레임의 강성을 고려한 최적 아웃리거 위치의 제안)

  • Kim, Hyong-Kee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.183-190
    • /
    • 2019
  • This paper intended to propose the optimal outrigger position in tall building. For this purpose, a schematic structure design of 70 stories building was accomplished by using MIDAS-Gen. In this analysis research, the key variables were the stiffness of outrigger, the stiffness of frame, the stiffness of shear wall, the stiffness of exterior column connected in outrigger and the outrigger location in height. With the intention of looking for the optimum location of outrigger system in high-rise building, we investigated the lateral displacement in top floor. The study proposed the new method to predict the optimal location of outrigger system considering the frame stiffness. And it is verified that the paper results can be helpful in providing the important engineering materials for finding out the optimum outrigger position in tall building.

An Evaluation Scheme of Torsional Irregularity for Seismic Design of Hanok (한옥의 내진설계를 위한 비틀림비정형 평가 방안)

  • Kim, Yeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.191-198
    • /
    • 2019
  • In this paper the evaluation scheme for determining torsional irregularity of Hanok has been proposed. The proposed method can evaluate torsional irregularity of Hanok easily only with characteristics of Hanok shapes, arrangement of lateral load resisting frames and their lateral stiffness without time consuming and complicate 3-dimensional structural analysis. The proposed formula is expressed as allowable maximum eccentricity, and torsional irregularity is evaluated by comparing this value with actual eccentricity. The applicability of the proposed scheme was evaluated by applying it to the line shape plan Hanok with two symmetrically arranged walls and the result was expressed by formula and graph. The results showed that the allowable maximum eccentricity is 10% of plan dimension perpendicular to the seismic load when the walls are placed at the extreme end. The proposed formula was expressed as a generalized formula so it can be applied generally to the various plan shape and wall arrangement of Hanok.

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF

Modeling for Discovery the Cutoff Point in Standby Power and Implementation of Group Formation Algorithm (대기전력 차단시점 발견을 위한 모델링과 그룹생성 알고리즘 구현)

  • Park, Tae-Jin;Kim, Su-Do;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.107-121
    • /
    • 2009
  • First reason for generation of standby power is because starting voltage must pass through from the source of electricity to IC. The second reason is due to current when IC is in operation. Purpose of this abstract is on structures of simple modules that automatically switch on or off through analysis of state on standby power and analysis of cutoff point patterns as well as application of algorithms. To achieve this, this paper is based on analysis of electric signals and modeling. Also, on/off cutoff criteria has been established for reduction of standby power. To find on/off cutoff point, that is executed algorithm of similar group and leading pattern group generation in the standby power state. Therefore, the algorithm was defined as an important parameter of the subtraction value of calculated between $1^{st}$ SCS, $2^{nd}$ SCS, and the median value of sampling coefficient per second from a wall outlet.

  • PDF

EFFECT OF CURING METHODS OF RESIN CEMENTS ON BOND STRENGTH AND ADHESIVE INTERFACE OF POST (레진시멘트의 중합방법이 포스트의 결합강도와 접착계면에 미치는 영향)

  • Kim, Mun-Hang;Kim, Hae-Jung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • The purpose of this study was to compare the effect of curing methods of adhesive resins and resin cements in the root canal. Crown portions of 32 single-rooted mandibular premolars were removed. Routine endodontic treatment was done, and 9 mm deep post spaces were prepared within root canals. No.3 FRC Postec posts (Ivoclar-Vivadent AG, Liechtensteih) were cemented in the post spaces by self-(SC) or light-curing (LC) using two dual-cured adhesives (Adper Scotchbond multi-purpose plus and Exite DSC )and resin cements (RelyX ARC and Variolink II). They were assigned to 4 groups (n=8): R-SC, R-LC, V-SC, V-LC group. After stored in distilled water for 24 hours, each root was transversally sectioned with 1.5 mm thick and made three slices. The specimens were subjected to push-out test in a universal testing machine (EZ Test, Shimadzu Co., Japan) with a crosshead speed of 1 mm/min. The data were analyzed with repeated ANOVA and one-way ANOVA. Also the interface of post-resin cement and resin cement-canal wall of each group was observed under FE-SEM. When fiber posts were cemented into the root canal using total-etch adhesives, the bond strength and adaptation between post and root canal dentin was affected by curing method. Self-cure of adhesives and resin cements showed higher bond strength and closer adaptation than light-cure of them.

Development of Corner-Supported Auto Climbing Formwork System (강합성코어벽을 활용한 코너지지형 거푸집시스템 개발)

  • Hong, Geon-ho;Shim, Woo-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.171-178
    • /
    • 2019
  • Auto Climbing Formwork System (ACS) for construction of high-rise building is a construction method for automatically lifting the formwork system supported by the anchor on the pre-constructed concrete wall. It has excellent construction speed and quality, but it has the possibility of structural failure depending on the quality of concrete and also has low economical efficiency due to the use of foreign technology. In order to overcome these problems, this study conducted an optimum design for the development of a new concept of Corner Supported Auto Climbing System (CS-ACS) in conjunction with the development of corner steel-reinforced concrete core wall system. For the design the formwork system, the basic module and structural member compositions were planned, and the structural analysis program was used to analyze the optimum member's cross section and spacing. As a result, the horizontal displacement and the stress of the horizontal members were influenced by the spacing more than the cross-section of the member. On the other hand, vertical members did not affect the displacement and stress of the formwork system. The form tie was very effective in controlling the displacement when adjusting the spacing of the horizontal members, but when the spacing of the form tie is more than 1,500mm, it is analyzed that form tie is yielding in basic module. When the span of the formwork system is more than 30m, it is analyzed that the basic module needs to be changed because of the increase of overall displacement.

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE (분지관 내 물체 주위 맥동류에 대한 CFD 해석)

  • Hwang, D.Y.;Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

Soil Environmental Assesment by the Risk and Artificial Enrichment of Hampyeong District Soils (함평지역 토양의 위해성과 인위적 부화에 의한 토양환경평가)

  • Youn, Seok-Tai;Na, Bum-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.321-333
    • /
    • 2008
  • Considering risks and artificial enrichments of metals in the soils of the study area, the study aims to analyze geology, grain size and geochemistry. Geology is mainly composed of gneisses and phyllites of metamorphic rocks, sandstones, siltstones, shales, tuffs of sedimentary ones and granites and andesites of igneous ones in the area. In the area, mean contents of metals are not meaningful in accordance with petrogenesis. The soil textures of the area are of S, lS and sL of sandy soil, L, scL, cL of loam and C, zC and sC of clayey soil. Mean contents of Ni, Cr, Co and Cu are meaningfully high in loam and clayey soil relative to sandy soil, whereas Ni, Zn, Cd contents are higher in clayey soil than in loam. Those differences imply the metallic contents are dependent to grain size. Based on the metal contents in the soils of the study area, Cu and Zn in loams and Pb in sandy soils are corresponded to soil contamination warning standards, and As showing 75mg/kg of maximum content in loams is assigned to soil contamination countermeasure standards, respectively. Artificial enrichment factor minimized wall rock and grain size relations is over 1 in Cr, Ni and Cu, but the factor is below 1 in average of other metals.