• Title/Summary/Keyword: SBO

Search Result 102, Processing Time 0.018 seconds

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.

Minimization of Small Bowel Volume within Treatment Fields Using Customized Small Bowel Displacement System(SBDS) (골반부 방사선 조사야 내의 소장 용적을 줄이기 위한 Small Bowel Displacement System(SBDS)의 사용)

  • Lim Do Hoon;Huh Seung Jae;Ahn Yong Chan;Kim Dae Yong;Wu Hong Gyun;Kim Moon Kyung;Choi Dong Rak;Shin Kyung Hwan
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.263-268
    • /
    • 1997
  • Purpose : Authors designed a customized Small Bowel Displacement System (SBDS) to displace the small bowel from the Pelvic radiation fields and minimize treatment-related bowel morbidities. Materials and Methods : From August 1995 to Mar 1996. 55 consecutive patients who received pelvic radiation therapy with the SBDS were included in this study. The SBDS consists of a customized styrofoam compression device which can displace the small bowel from the radiation fields and an individualized immobilization abdominal board for easy daily setup in prone position After opacifying the small bowel with Barium3, the patients were laid Prone and posterior-anterior (PA) and lateral (LAT) simulation films were taken with and without the SBDS. The areas of the small bowel included in the radiation fields with and without the SBDS were compared. Results : Using the SBDS, the mean small bowel area was reduced by $59\%;on\;PA\;and\;51\%$ on LAT films (P=0.0001). In six Patients (6/55. $11\%$), it was Possible that no small bowel was included within the treatment fields. The mean upward displacement of the most caudal small bowel was 4.8 cm using the SBDS. Only $15\%$ (8/55) of patients treated with the SBDS manifested diarrhea requiring medication. Conclusion : The SBDS is a novel method that can be used to displace the small bowel away from the treatment portal effectively and reduce the radiation therapy morbidities. Compliance with setup is excellent when the SBDS is used.

  • PDF