• Title/Summary/Keyword: SBI (Single Burning Item)

Search Result 4, Processing Time 0.018 seconds

The Study on the Fire Characteristic of Sandwich Panel by SBI(Single Burning Item) (SBI(Single Burning Item)을 이용한 샌드위치패널의 화재특성 연구)

  • Kim, Jung-Hyun;Kim, Heoung-Youl;Lim, Young-Soo;Lee, Seung-Han
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.493-500
    • /
    • 2010
  • 본 연구에서는 EN 13823 기준을 적용한 시험방법인 SBI(Single Burning Item)을 이용하여 스티로폼 샌드위치패널의 화재특성에 대한 실험을 실시하였다. 현재 국내에서는 샌드위치패널 화재특성 평가방법으로 ISO 5660-1(콘칼로리미터 시험방법)과 KS F 2271(난연성시험)이 사용되고 있지만 이러한 시험방법들은 시험 스케일과 시험편 및 가열조건의 한계점 등을 보이고 있다. 따라서 본 연구에서는 1세트를 3개로 하여 총 9개의 75mm 두께인 스티로폼 샌드위치 패널을 이용한 실험을 실시하였다. 이를 통해 공학적인 화재 물성 값인 FIGRA(FIre Growth RAte, kW/s), SMOGRA(SMOke Growth RAte, m2/s2)등을 측정하였다.

  • PDF

An Experimental Study on Combustion Characteristics of Aluminum Composite Panels for Flame Retardant and General Materials (난연소재와 일반소재 알루미늄복합패널의 연소특성 비교에 관한 실험적 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Kim, Mi-Suk
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • In this research, aluminum composite panels of the general materials and fire retardant materials as building claddings make researches about fire performance comparison analysis. Test methods of the small and medium cone calorimeter experiments and SBI (Single Burning Item) experiments was applied to the determination. As a result, in the experiments peak heat release rate cone calorimeter the general aluminum composite panel $1,293kW/m^2$ ($75kW/m^2$), flame-retardant aluminum composite panel $70kW/m^2$ ($75kW/m^2$) was measured. In the SBI experiments fire growth rate the general fire aluminum composite panel is approximately 743 W/s and the flame-retardant aluminum composite panel is approximately 97 W/s of the value were measured. Thus, a standards enactment are urgently required in this case it is used as building claddings of the aluminum composite panel by fire risk assessment.

A Study on the Fire Risk Assessment of EIFS by Cone Calorimeter Test & Single Burning Item Test (중소형화재실험을 이용한 외단열 시스템(EIFS) 화재위험성평가에 관한 연구)

  • Min, Se-Hong;Kim, Mi-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, in circumstantial situation it is recommended positively to utilize of EIFS(Exterior Insulating and Finishing System) as energy policy for economizing energy. But internal EPS insulators of EIFS are exterior panel of high fire risk, because of constituting of flammable materials to be fragile in fire. In this study, fire risk is assessed by experiment Con Calorimeter test and SBI(Single Burning Item) test. As the result of experiment, Con Calorimeter tests do not reach to capability standard of internal incombustible grade, and are assessed as low grade in SBI incombustible grade. Because EIPS is exterior material in buildings with high fire risk in spite of good efficiency, it is required rapidly to take measures to meet situation through various studies(for instance, adjusting law regulation, etc.) in the future.

Analysis on the Reaction-to-fire's Performance of Sandwich Panel Systems by using ISO 5660-1 and EN 13823 Fire Tests (중소형 화재시험(ISO 5660-1 및 EN 13823)을 이용한 샌드위치패널 연소성능 분석)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • In this study, the combustion properties, which are called the reaction-to-fire's performance, of sandwich panels were tested and analyzed according to both ISO 5660 (cone calorimeter method) and EN 13823 (SBI). Several variables including ignition time, mass loss, heat release rate, smoke production rate and $O_2$ density about four sandwich panels and four core materials (thermal insulation material) were evaluated. Combustion properties' similarity and difference of sandwich panels and core materials were compared by materials and test methods respectively. Finally test results were evaluated by Japanese standard building code, National Building code of Canada and EN 13501-1 as well.