• Title/Summary/Keyword: SB-2 materials

Search Result 437, Processing Time 0.029 seconds

Effect of n-type Dopants on CoSb3 Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering (Spark Plasma Sintering 법으로 제조한 CoSb3 Skutterudite계 열전소재의 n형 첨가제 효과)

  • Lee, Jae-Ki;Choi, Soon-Mok;Lee, Hong-Lim;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.326-330
    • /
    • 2010
  • $CoSb_3$ Skutterudites materials have high potential for thermoelectric application at mid-temperature range because of their superior thermoelectric properties via control of charge carrier density and substitution of foreign atoms. Improvement of thermoelectric properties is expected for the ternary solid solution developed by substitution of foreign atoms having different valances into the $CoSb_3$ matrix. In this study, ternary solid solutions with a stoichiometry of $Co_{1-x}Ni_xSb_3$ x = 0.01, 0.05, 0.1, 0.2, $CoSb_{3-y}Te_y$, y = 0.1, 0.2, 0.3 were prepared by the Spark Plasma Sintering (SPS) system. Before the SPS synthesis, the ingots were synthesized by vacuum induction melting and followed by annealing. For phase analysis X-ray powder diffraction patterns were checked. All the samples were confirmed as single phase; however, with samples that were more doped than the solubility limit some secondary phases were detected. All the samples doped with Ni and Te atoms showed a negative Seebeck coefficient and their electrical conductivities increased with the doping amount up to the solubility limit. For the samples prepared by SPS the maximum value for dimensionless figure of merit reached 0.26, 0.42 for $Co_{0.9}Ni_{0.1}Sb_3$, $CoSb_{2.8}Te_{0.2}$ at 690 K, respectively. These results show that the SPS method is effective in this system and Ni/Te dopants are also effective for increasing thermoelectric properties of this system.

Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성)

  • Kim, K.H.;Park, J.S.;Ahn, J.P.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2010
  • $CoSb_3$-based skutterudite compounds are promising candidates as thermoelectric (TE) materials used in intermediate temperature region. In this study, sintering of $CoSb_3$ powder and joining of $CoSb_3$ to copper-molybdenum electrode have been simultaneously performed by spark plasma sintering technique. The Ti foil was used for preventing the diffusion of copper into $CoSb_3$ and the Cu : Mo = 3 : 7 Vol. ratio composition was selected by the consideration of thermal expansion coefficients. The insertion of Ti interlayer between Cu-Mo and $CoSb_3$ was effective to join $CoSb_3$ to Cu-Mo by forming an intermediate layer of $TiSb_2$ at the Ti-$CoSb_3$ boundary. However, the formation of TiSb and TiCoSb intermediate layers deteriorated the joining properties by the generation of cracks in the interface of intermediate layer/$CoSb_3$ and intermediate/intermediate layers.

Investigation of Friction and Wear Characteristics of Automotive friction Materials containing different relative amounts of solid lubricants(Graphite, MoS$_2$, and Sb$_2$S$_3$) (자동차용 마찰재에 사용되는 고체윤활제의 성분비에 따른 마찰 밀 마모 특성에 관한 연구)

  • Choi, Nak-Cheon;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.265-271
    • /
    • 1999
  • The effects of solid lubricants on wear and friction characteristics of friction materials were studied using a pad-on-disk type friction tester. Friction materials with four different formulations containing different relative amounts of solid lubricants(graphite, MoS$_2$, and Sb$_2$S$_3$) were investigated. Results of this work showed that each formulation with different lubricants had unique friction characteristics. Friction material containing rich MoS$_2$ showed excellent friction stability at different friction conditions. However friction material containing rich Sb$_2$S$_3$revealed high wear of friction materials.

  • PDF

The Study of Phase-change with Temperature and Electric field in Chalcogenide Thin Film

  • Yang, Sung-Jun;Shin, Kyung;Park, Jung-Il;Lee, Ki-Nam;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.24-27
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide Ge$_2$Sb$_2$Te$\sub$5/ thin film. T$\sub$c/(crystallization temperature) is confirmed by measuring the resistance with the varying temperature on the hotplate. We have measured I-V characteristics with Ge$_2$Sb$_2$Te$\sub$5/ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration.

Thermoelectric Properties of p-type 25% $Bi_{2}Te_{3}+75%Sb_{2}Te_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 p-type 25% $Bi_{2}Te_{3}+75% Sb_{2}Te_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.246-252
    • /
    • 1996
  • $Bi_{2}Te_{3}-Sb_{2}Te_{3}$, $Bi_{2}Te_{3}-Bi_{2}Se_{3}$ solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073$\times$$10^{-3}K^{-4}$. The bending strength of the material, hot pressed at 45$0^{\circ}C$, was 5.87 kgf/${mm}^2$.

  • PDF

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Behavior of Oxygen Equilibrium Pressure in CRT Glass Melts doped with Sb and Ce ions from the Viewpoint of Fining

  • Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Jun-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.419-423
    • /
    • 2007
  • The behavior of oxygen gas participating in fining was observed in CRT (Cathode Ray Tube) glass melts doped with $Sb_2O_5\;or\;CeO_2$ by means of a yttria-stabilized zirconia (YSZ) electrode. The temperature dependence of the oxygen equilibrium pressure ($P_{o2}$) or the activity in both melts showed typical behavior corresponding to a theoretical redox reaction. In other words, the $P_{o2}$ value of melts with $CeO_2$ was lower than that of melts with $Sb_2O_5$ above $1250^{\circ}C$. The result implies that $Sb_2O_5$, is more efficient as a fining agent compared to $CeO_2$. On the other hand, melts from a batch containing $Sb_2O_5\;and\;KNO_3$ showed much higher $P_{o2}$ values compared to melts without $KNO_3$ above $1350^{\circ}C$. It is suggested that the addition of $KNO_3$ to CRT glass batch contributes partly to the first fining of the melts.

Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying (용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • A single phase $Mg_3Sb_2$ alloy was synthesized by melting the mixture of Mg and Sb metal powders at 1173 K. The figure of merit of the $Mg_3Sb_2$ prepared by melting method increased with temperature and showed a value of $2.39{\times}10^{-2}$ at 593 K. When the $Mg_3Sb_2$ powders were milled at high speed in a planetary ball mill for 12~48 h, Zintle phase ($Mg_3Sb_2$) was maintained as a main phase, but its crystallinity became deteriorated and elemental Sb phase appeared. Sb phase free $Mg_3Sb_2$ could be obtained by the mechanical alloying of high speed ball milling for 24 h using elemental Mg and Sb powder mixtures.

Effect of Fe Doping on Thermoelectric Properties of Mechanically Alloyed $CoSb_3$

  • Ur, Soon-Chul;Kwon, Joon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.957-958
    • /
    • 2006
  • Fe doped skutterudite $CoSb_3$ with a nominal composition of $Fe_xCo_{1-x}Sb_{12}(0{\leq}x{\leq}2.5)$ have been synthesized by mechanical alloying (MA) of elemental powders, followed by vacuum hot pressing. Phase transformations during mechanical alloying and vacuum hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase of $FeSb_2$ was found to exist in case of $x\geq2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe doping up to x=1.5 with Co in $Fe_xCo_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

  • PDF