• Title/Summary/Keyword: SATELLITE IMAGE

Search Result 2,132, Processing Time 0.026 seconds

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

KOMPSAT Imagery Applications (다목적실용위성 영상 활용)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Lee, Won-Jin;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1923-1929
    • /
    • 2021
  • Earth observation satellites are being used in various field and are being developed in many countries due to their high utility and marketability. Korea is developing various Earth observation satellites according to National Space Development Plan. Among them, the Korea Multi-Purpose Satellite(KOMPSAT) series is the most representative low-orbit satellite. So far, a total of five KOMPSAT have been launched to meet the national image demand and have been used in various fields, including national institutions. This special issue introduces research related to data processing, analysis, and utilization using various image data from the KOMPSAT series. Meanwhile, for the uninterrupted utilization of the subsequent KOMPSAT image data, data processing and utilization research suitable for high-resolution images must be continued, and related research contents will be continuously shared through a special issue.

Fabrication and Performance Test of Small Satellite Camera with Focus Mechanism (포커스 메커니즘이 적용된 소형 위성 카메라의 제작 및 성능 실험)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2019
  • The precise alignment between optical components is required in high-resolution earth observation satellites. However, the misalignment of optical components occurs due to external factors such as severe satellite launch environment and space environment. A satellite optical system with a focus mechanism is required to compensate for the image quality degraded by these misalignments. This study designed, fabricated, aligned precisely, and carried out a performance tests for the image quality of the system. The satellite optical camera performance tests were carried out to check the image quality change by operating the focus mechanism and to analyze the satellite optical system MTF by photographing USAF target using the autocollimator. According to the experimental results, the misalignments can be compensated sufficiently with the focus mechanism. Finally the basic data for re-focusing algorithm of the optical system was obtained through this study.

A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City (고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로)

  • Cho, Nahye;Lee, Jungjoo;Kim, Hyundeok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • In order to acquire a wide range of land that changes in real time and quickly and accurately grasp it, we plan to utilize the recently released high-resolution S.Korea's satellite image data and artificial intelligence (AI). Compared to existing satellite images, the spectral and periodic resolutions of S.Korea's satellite are higher, making them a more suitable data source for periodically monitoring changes in land. Therefore, this study aims to acquire S.Korea's satellite, select 8 types of objects to detect land changes, construct data sets for them, and apply AI models to analyze them. In order to confirm the optimal model and variable conditions for detecting 8 types of objects of various types, several experiments are performed and AI-based image analysis is technically reviewed.

Image processing technique for Optical Camera Communication (OCC에서의 이미지 처리 기술)

  • Nguyen, Trang;Le, Nam-Tuan;Jang, Yeong Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.47-52
    • /
    • 2014
  • This paper introduces the Optical Camera Communications (OCC) using image processing technique. The architecture and operation of OCC system are given. To enhance data rate which is limited by sampling operation of commercial 30fps camera, multi colors transmission technique is employed, leading to the importance of color image processing technique. Multi color encoding and image processing based decoding will be proposed in the paper.

The Characteristics of Discriminating of Specific Image from Satellite Images Data Using Image Spectrum Processing (영상 스펙트럼 처리를 이용한 위성 탐색사진에서의 형상 판별 특성 연구)

  • 심성기;차홍준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.655-657
    • /
    • 2003
  • This study is on the characteristics of discriminating of image using unique electric wave intensity value from satellite images data. Namely this study is on studying specific image characteristics by image spectrum and is on developing procedures discriminating of water, forest. narrow-leaved(coniferous) trees, broad-leaved(deciduous) trees, terrain, farmland, grassland, etc. using unique spectrum value in material. Finally applying this procedures, we design and implement discriminating system, IDEA(Information Discriminating Extracting Agent).

  • PDF

Application of Ray Following Algorithm to High Resolution Satellite Image Simulation

  • Shin, Dong-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.559-564
    • /
    • 2002
  • This paper describes a new algorithm named as ray following algorithm which is applied for high-resolution satellite image simulation. The problems of the conventional ray tracing algorithm are pointed out especially when terrain elevations vary abruptly. The proposed algorithm follows the directional ray vector sequentially and thoroughly in order to determine the crossing point of the ray with the terrain surface. This way of sequential height comparison method is regarded as the only way to obtain accurate surface cross-section when a highly variant digital surface model is used. The experimental results show and compare the validities of the conventional and proposed algorithms.

  • PDF

Detection of the Damaged Trees by Pine Wilt Disease Using IKONOS Image

  • Lee, S.H.;Cho, H.K.;Kim, J.B.;Jo, M.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.709-711
    • /
    • 2003
  • The purpose of this study is to detect the damaged red pine trees by pine wilt disease using high resolution satellite image of IKONOS Geo. IKONOS images are segmented with eCognition image processing software. A segment based maximum likelihood classification was performed to delineate the pine stand. The pine stands are regarded as a potential damage area. In order to develop a methodology to detect the location of damaged trees from the high resolution satellite image, black and white aerial photographs were used as a simulated image. The developed method based on filtering technique. A local maximum filter was adapted to detect the location of individual tree. This report presents a part of the first year results of an ongoing project.

  • PDF

Urban Growth Analysis Through Satellite Image and Zonal Data (도시성장분석상 위상영상자료와 구역자료의 통합이용에 관한 연구)

  • Kim, Jae-Ik;Hwang, Kook-Woong;Chung, Hyun-Wook;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Nowadays, a satellite image is widely utilized in identifying and predicting urban spatial growth. It provides essential informations on horizontal expansion of urbanized areas. However, its usefulness becomes very limited in analyzing density of urban development. On the contrary, zonal data, typically census data, provides various density information such as population, number of houses, floor information within a given zone. The problem of the zonal data in analyzing urban growth is that the size of the zone is too big. The minimum administration unit, Dong, is too big to match the satellite images. This study tries to derive synergy effects by matching the merits of the two information sources-- image data and zonal data. For this purpose, basic statistical unit (census block size) is utilized as a zonal unit. By comparing the image and zonal data of 1985 and 2000 of Daegu metropolitan area, this study concludes that urban growth pattern is better explained when the two types of data are properly used.

  • PDF

Lineament analysis in the euiseong area using automatic lineament extraction algorithm (자동 선구조 추출 알고리즘을 이용한 경북 의성지역의 선구조 분석)

  • 김상완
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.19-31
    • /
    • 1999
  • In this study, we have estimated lineaments in the Euiseong area, Kyungbuk Province, from Landsat TM by applying the algorithm developed by Kim and Won et al. which can effectively reduce the look direction bias associated with the Sun's azimuth angle. Fratures over the study area were also mapped in the field at 57 selected sites to compare them with the results from the satellite image. The trends of lineaments estimated from the Landsat TM images are characterized as $N50^{\circ}$~70W, NS~$N10^{\circ}$W, and $N10^{\circ}$~$60^{\circ}$E trends. The spatial distribution of lineaments is also studied using a circular grid, and the results show that the area can be divided into two domains : domain A in which NS~$N20^{\circ}$E direction is dominant, and domain B in which west-north-west direction is prominent. The trends of lineaments can also be classified into seven groups. Among them, only C, D and G trends are found to be dominant based upon Donnelly's nearest neighbor analysis and correlations of lineament desities. In the color composite image produced by overlaying the lineament density map of these C-, D-, and G-trends, G-trend is shown to be developed in the whole study area while the eastern part of the area is dominated by D-trend. C-trend develops extensively over the whole are except the southeastern part. The orientation of fractures measured at 35 points in the field shows major trends of NS~$N30^{\circ}$E, $N50^{\circ}$~$80^{\circ}$W, and N80$^{\circ}$E~EW, which agree relatively well with the lineaments estimated form the satellite image. The rose diagram analysis fo field data shows that WNW-ESE trending discontinuities are developed in the whole area while discontinuities of NS~$N20^{\circ}$E are develped only in the estern part, which also coincide with the result from the satellite image. The combined results of lineaments from the satellite image and fracture orientation of field data at 22 points including 18 minor faults in Sindong Group imply that the WNW-ESE trend is so prominent that Gumchun and Gaum faults are possibly extended up to the lower Sindong Group in the study area.

  • PDF