• Title/Summary/Keyword: SAT Algorithm

Search Result 31, Processing Time 0.03 seconds

GPGPU Acceleration of SAT Algorithm with Propagation Routine Parallelization (전달 루틴의 병렬화를 통한 SAT 알고리즘의 GPGPU 가속화)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1919-1926
    • /
    • 2016
  • Because of the enormous processing ability, General-Purpose Graphics Processing Unit(GPGPU) has been applied to many fields including electronics design automation. The SAT algorithm is one of the core algorithm in many electronics design automation tools. There has been some efforts to apply GPGPU to the SAT algorithm, but it is difficult to parallelize the SAT algorithm because of its characteristics. In this paper, I applied GPGPU to the SAT algorithm by parallelizing the propagation routine that is relatively suitable to parallel processing. On the basis of the similarity of the propagation routine to the sparse matrix multiplication, the data structure for the SAT problem is constituted, and the parallel propagation routine is described. To prevent data loss between paralllel threads, atomic operations are exploited. The experimental results for some benchmark SAT problems show that the proposed algorithm is superior to the previous GPGPU-based SAT solver.

A 3-SAT Polynomial Time Algorithm Based on Minimum Frequency Literal-First Selection Method (최소 빈도수 문자 우선 선택 방법의 3-SAT 다항시간 알고리즘)

  • Sang-Un, Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.157-162
    • /
    • 2023
  • To NP-complete 3-SAT problem, this paper proposes a O(nm) polynomial time algorithm, where n is the number of literals and m is the total frequency of all literals in equation f. The algorithm firstly decides a truth value of a literal in sequence of previously-set priority. The priority order is as follows: a literal whose occurrence in a clause is 1(k=1), a literal which is k≥2 and whose truth value is either 0 or 1, and a literal with the minimum frequency. Then, literals whose truth value is determined are then deleted from clause T and the remaining clauses. This process is repeated l times, the number of literals. As a result, the proposed algorithm has been successful in accurately determining the satisfiability of a given equation f and in deciding the truth value of all the literals. This paper, therefore, provides not only a linear-time algorithm as a viable solution to the SAT problem, but also a basis for solving the P versus NP problem.

k-SAT Problem Algorithm Based on Maximum-Maximum Frequency (최대-최대 빈도수 k-SAT 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.125-132
    • /
    • 2023
  • To NP-complete 3-SAT problem, this paper proposes a O(nm) polynomial time algorithm, where n is the number of literals and m is the total frequency of all literals in equation f. Conventionally well-known DPLLs should perform O(2𝑙) in the worst case by performing backtracking if they fail to find a solution in a brute-force search of a branch-and-bound for the number of literals 𝑙. DPLL forms the core of the SAT Solver by substituting true(T) or false(F) for a literal so that a clause containing the least frequency literal is true(T) and removing a clause containing that literal. Contrary to DPLL, the proposed algorithm selects a literal max𝑙 with the maximum frequency and sets $_{\max}({\mid}l{\mid},{\mid}{\bar{l}}{\mid})=1$. It then deletes 𝑙∈ci clause in addition to ${\bar{l}}$ from ${\bar{l}}{\in}c_i$ clause. Its test results on various k-SAT problems not only show that it performs less than existing DPLL algorithm, but prove its simplicity in satisfiability verification.

Development of a Retrieval Algorithm for Adjustment of Satellite-viewed Cloudiness (위성관측운량 보정을 위한 알고리즘의 개발)

  • Son, Jiyoung;Lee, Yoon-Kyoung;Choi, Yong-Sang;Ok, Jung;Kim, Hye-Sil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • The satellite-viewed cloudiness, a ratio of cloudy pixels to total pixels ($C_{sat,\;prev}$), inevitably differs from the "ground-viewed" cloudiness ($C_{grd}$) due to different viewpoints. Here we develop an algorithm to retrieve the satellite-viewed, but adjusted cloudiness to $C_{grd} (C_{sat,\;adj})$. The key process of the algorithm is to convert the cloudiness projected on the plane surface into the cloudiness on the celestial hemisphere from the observer. For this conversion, the supplementary satellite retrievals such as cloud detection and cloud top pressure are used as they provide locations of cloudy pixels and cloud base height information, respectively. The algorithm is tested for Himawari-8 level 1B data. The $C_{sat,\;adj}$ and $C_{sat,\;prev}$ are retrieved and validated with $C_{grd}$ of SYNOP station over Korea (22 stations) and China (724 stations) during only daytime for the first seven days of every month from July 2016 to June 2017. As results, the mean error of $C_{sat,\;adj}$ (0.61) is less that than that of $C_{sat,\;prev}$ (1.01). The percent of detection for 'Cloudy' scenario of $C_{sat,\;adj}$ (73%) is higher than that of $C_{sat,\;prev}$ (60%) The percent of correction, the accuracy, of $C_{sat,\;adj}$ is 61%, while that of $C_{sat,\;prev}$ is 55% for all seasons. For the December-January-February period when cloudy pixels are readily overestimated, the proportion of correction of $C_{sat,\;adj$ is 60%, while that of $C_{sat,\;prev}$ is 56%. Therefore, we conclude that the present algorithm can effectively get the satellite cloudiness near to the ground-viewed cloudiness.

Development of an Efficient Processor for SIRAL SARIn Mode

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.

Study on the Development of Snowfall Retrieval Algorithm using CloudSat and Passive Microwave (CloudSat와 수동 마이크로파 자료를 결합한 강설 추정 알고리즘 개발에 관한 연구)

  • Park, Kyung-Won;Kim, Jong-Pil;Kim, Na-Ri;Kim, Young-Seup
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.265-265
    • /
    • 2012
  • 한반도 지역의 강설(snowfall)은 전체 연 강수량의 약 10% 이하로 매우 적은 양을 차지하고 있다. 하지만 강설은 대기질(air quality)을 개선하고 산불 발생률을 저감시키며, 특히 봄철 수자원의 제공과 가뭄피해 경감 등 수문학적으로도 중요한 기능을 가진다. 하지만 최근 기후변화로 인해 폭설 현상이 빈번하게 발생하여 사회 경제적 손실을 유발하고 있다. 따라서 강설로 인한 피해를 최소한으로 줄이기 위해서는 정확한 강설탐지 및 강설 추정 방법이 필요하다. 최근 해외의 수많은 연구들을 통하여 수동 마이크로파 센서 자료를 활용한 강설 추정의 가능성이 확인되고 있다. 하지만 수동 마이크로파 센서의 휘도온도를 이용한 추정 방법들은 대기의 연직 구조 파악에 어려움이 있기 때문에 정확한 강설량을 추정하는 데에 한계가 있다. 그러나 2006년 발사된 CloudSat의 Cloud Profiling Radar는 강설의 연직 프로파일에 대한 가치 있는 정보를 제공하기 때문에 수동 마이크로파 센서 자료와의 결합을 통해 보다 정확한 강설 추정 알고리즘을 제시할 수 있을 것으로 판단된다. 따라서 본 연구에서는 CloudSat의 Cloud Profiling Radar (CPR) 자료와 수동 마이크로파 센서인 NOAA의 Microwave Humidity Sounder (MHS) 센서 자료를 결합하여 한반도 강설 추정에 적합한 알고리즘을 개발하고자 한다.

  • PDF

Development of Snowfall Retrieval Algorithm by Combining Measurements from CloudSat, AQUA and NOAA Satellites for the Korean Peninsula

  • Kim, Young-Seup;Kim, Na-Ri;Park, Kyung-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2011
  • Cloudsat satellite data is sensitive to snowfall and collected during each month beginning with Dec 2007 and ending Feb 2008. In this study, we attempt to develop a snowfall retrieval algorithm using a combination of radiometer and cloud radar data. We trained data from the relation between brightness temperature measurements from NOAA's Advanced Microwave Sounder Unit-B(AMSU-B) and the radar reflectivity of the 2B-GEOPROF product from W-band(94 GHz) cloud radar onboard Cloudsat and applied it to the Korea peninsula. We use a principal components analysis to quantify the variations that are the result of the radiometric signatures of snowfall from those of the surface. Finally, we quantify the correlation between the higher principal component (orthogonal to surface variability) of the microwave radiances and the precipitation-sensitive CloudSat radar reflectivities. This work summarizes the results of applying this approach to observations over the East Sea during Feb. 2008. The retrieved data show reasonable estimation for snowfall rate compared with Cloudsat vertical image.

Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm (사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식)

  • Kim, Jong-Min;Kang, Myung-A
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • This paper proposes a classifier based on rectangular feature to detect face in real time. The goal is to realize a strong detection algorithm which satisfies both efficiency in calculation and detection performance. The proposed algorithm consists of the following three stages: Feature creation, classifier study and real time facial domain detection. Feature creation organizes a feature set with the proposed five rectangular features and calculates the feature values efficiently by using SAT (Summed-Area Tables). Classifier learning creates classifiers hierarchically by using the AdaBoost algorithm. In addition, it gets excellent detection performance by applying important face patterns repeatedly at the next level. Real time facial domain detection finds facial domains rapidly and efficiently through the classifier based on the rectangular feature that was created. Also, the recognition rate was improved by using the domain which detected a face domain as the input image and by using PCA and KNN algorithms and a Class to Class rather than the existing Point to Point technique.

A NARX Dynamic Neural Network Platform for Small-Sat PDM (동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구)

  • Lee, Hae-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.809-817
    • /
    • 2020
  • In the design and development process of Small-Sat power distribution and transmission module, the stability of dynamic resources was evaluated by a deep learning algorithm. The requirements for the stability evaluation consisted of the power distribution function of the power distribution module and demand module to the SAR radar in Small-Sat. To verify the performance of the switching power components constituting the power module PDM, the reliability was verified using a dynamic neural network. The adoption material of deep learning for reliability verification is the power distribution function of the payload to the power supplied from the small satellite main body. Modeling targets for verifying the performance of this function are output voltage (slew rate control), voltage error, and load power characteristics. First, to this end, the Coefficient Structure area was defined by modeling, and PCB modules were fabricated to compare stability and reliability. Second, Levenberg-Marquare based Two-Way NARX neural network Sigmoid Transfer was used as a deep learning algorithm.

A Study on the Site Acceptance Test(SAT) Evaluation Algorithm of Energy Storage System using Li-ion Battery (리튬이온전지를 이용한 전기저장장치의 SAT용 성능평가 알고리즘에 관한 연구)

  • Park, Jea-Bum;Kim, Byung-Ki;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • Recently, standardization of installation progress and technology of site acceptance test(SAT) for energy storage system(ESS) are being required due to performance of ESS depending on working condition and environment even though the quality and safety of each component of ESS is guaranteed. And also, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool, in order to more accurately and reliably validate the performance of the ESS in advanced countries. Therefore, this paper proposes evaluation algorithm for SAT to evaluate performance of ESS and presents modeling of SAT test equipment for ESS by using PSCAD/EMTDC. Furthermore, 30[kW] scaled portable test equipments is implemented based on the proposed algorithm and modeling. From the various simulation and test results, it is confirmed that performance of ESS related to characteristics of capacity and Round-trip efficiency, Duty-cycle efficiency, low voltage ride through(LVRT) and Anti-islanding can be accurately evaluated and that the simulation results of PSCAD/EMTDC are identical to test results of 30[kW] test equipment.