• Title/Summary/Keyword: SASA BOREALIS

Search Result 112, Processing Time 0.021 seconds

Analysis of Nutritional Components and Evaluation of Functional Activities of Sasa borealis Leaf Tea (조릿대 잎차의 영양성분 분석 및 기능성 평가)

  • Jeong, Chang-Ho;Choi, Sung-Gil;Heo, Ho-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.586-592
    • /
    • 2008
  • In this study, the nutritional components and functional activities of Sasa borealis leaf tea were evaluated. The proximate compositions were as follows; moisture 5.68%, crude protein 16.38%, crude fat 4.68%, nitrogen free extracts 32.37%, crude fiber 32.36%, and ash 8.53%, respectively. The mineral elements were as follows: K 2,133.83, Ca 1,144.09 and P 543.00 mg%, respectively. The amino acid contents of the Sasa borealis leaf tea were very rich in proline (1,275.26 mg/100 g) and deficient in cystine (71.49 mg/100 g). The major fatty acid components were linoleic acid (50.52%), palmitic acid (18.52%), and oleic acid (14.16%). Finally, based on our sensory evaluations, the $80^{\circ}C$ extracted Sasa borealis leaf tea evidenced the best overall quality. The contents of total phenol and total flavonoids of the 80% methanol and hot water extracts were 15.09, 7.69 mg/g and 12.03, 6.12 mg/g, respectively. The DPPH and $ABTS^+$ radical scavenging activities of the 80% methanol extract from Sasa borealis leaf tea were 86.87% and 83.85% at a concentration of 1.25 mg/mL. The 80% methanol and hot water extracts evidenced reducing power and inhibitory effects against acetylcholinesterase in a dose-dependent manner.

Analysis of Water Retention Capacity at Sasa borealis Stands in Jirisan National Park (지리산국립공원 내 조릿대 임분의 수원함양기능 분석)

  • Ji, Hyung Woo;Park, Jae Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2008
  • Although landslides were frequently occurred under Tripterygium regelii and Rubus sp. vegetations, the damage of landslide was not observed in sasa (Sasa borealis) stands. These phenomena may be affected by forest vegetation types. This result suggested that the landslide occurred in Jirisan (Mt.) National Park may be closely related to water retention capacity at Sasa borealis stands. This study compared and analyzed the water retention capacity of each soil horizon of sasa, larch (Larix leptolepis) and mongolian oak (Quercus mongorica) stands. Soil bulk density in A horizon was lower in sasa (0.776g/$cm^3$) than in mongolian oak (0.828g/$cm^3$) and in larch stands (1.282g/$cm^3$). Water permeability in A horizon was 0.02055cm/sec for sasa, 0.00575cm/sec for mongolian oak, and 0.0007cm/sec for larch stands, respectively. The water permeability of sasa stand was about 3.6 times and about 29 times higher than in mongolian oak and in larch stands, respectively. This result indicates that water infiltration of soil surface during a rain event is more rapid in sasa than in other two stands. Soil organic matter content in B horizon was lower in larch (0.7%) than in mongolian oak (6.5%) and in Sasa (3.3%) stands. The solid ratio in A horizon was highest in larch among three stands, but that of mongolian oak and larch stands showed a similar rate. Pore space rates was 70.7% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of sasa, 68.9% for A horizon and 70.6% for B horizon of mongolian oak forests and 51.7% for A horizon and 49.2% for B horizon of larch forests, respectively. According to pore space rates, the water retention capacity may be poor in larch stand compared with other two stands. Soil strength in sasa and mongolian stands was over 25kgf/$cm^2$ from 40cm depth, while the strength was over 25kgf/$cm^2$ from 25cm depth in larch stand. The result indicates that tree growth and water permeability in larch stand could be limited due to high soil strength. Larch stand was poor for soil pore space development to be offered to the water retention capacity, but water retention capacity of A horizon soil in sasa stand was high than that of other two stands. Therefore, establishment of sasa stand under larch stand could help to prevent landslides.

Effect of Sasa borealis Silage Feeding on Daily Gain, Digestibility and Nitrogen Retention in Growing Black Goat (조릿대 사일리지 급여가 육성기 흑염소 일당증체량, 소화율 및 질소축적에 미치는 영향)

  • Chung, Sang Uk;Jang Yeong, Se Young;Yun, Young Sik;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • This study was conducted to evaluate the forage productivity and feed value of Sasa borealis (S. borealis) using growing black goats(S. borealis) in order to improve the utilization of S. borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. One control and three treatments were made by the level of addition of S. borealis silage to the TMR feed. T1(10%), T2(20%), and T3(30%) treatments showed more daily weight gains than control group. Feed conversion ratio of T2 is 4.4g, which is significantly lower than control(P<0.05). The nitrogen retention in the control, which had relatively high dry matter intake, was 12.5g, which was significantly higher than that of T3. Sasa. borealis silage is considered to be able to use as a forage source for black goats, and if it is fed in an appropriate amount, it is considered that it will help improve livestock productivity, such as weight gain and feed conversion ratio.

Distribution and synchronized massive flowering of Sasa borealis in the forests of Korean National Parks

  • Cho, Soyeon;Kim, Youngjin;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.308-316
    • /
    • 2018
  • Background: Genus Sasa, dwarf bamboos, are considered to be species that lower biodiversity in the temperate forests of East Asia. Although they have a long interval, they, the monocarpic species, have a unique characteristic of large-scale synchronized flowering. Therefore, once they have flowered and then declined, it may be an opportunity for suppressed surrounding species. A previous study reported that Sasa borealis showed specialized flowering nationwide with a peak in 2015. However, this was based on data from a social network service and field survey at Mt. Jeombong. Therefore, we investigated S. borealis in the forests of five national parks in order to determine whether this rare synchronized flowering occurred nationwide, as well as its spatial distribution. Results: We found a total of 436 patches under the closed canopy of Quercus mongolica-dominated deciduous forests in the surveyed transects from the five national parks. Of these patches, 75% occupied a whole slope area, resulting in an enormous area. The patch area tended to be larger in the southern parks. Half (219 patches) of the patches flowered massively. Among them, 76% bloomed in 2015, which was consistent with the results of the previous report. The flowering rate varied from park to park with that of Mt. Seorak being the highest. The culms of the flowering patches were significantly taller (F = 93.640, p < 0.000) and thicker (F = 61.172, p < 0.000). Following the event, the culms of the flowering patches declined, providing a good opportunity for the suppressed plant species. The concurrent massive flowering of the mature patches was believed to be triggered by some stress such as a spring drought. Conclusion: We confirmed that the rare synchronized flowering of S. borealis occurred with a peak in 2015 nationwide. In addition, we explored that S. borealis not only monopolized an enormous area, but also dominated the floors of the late-successional Q. mongolica-dominated deciduous forests. This presents a major problem for Korean forests. As it declined simultaneously after flowering, there are both possibilities of forest regeneration or resettlement of S. borealis by massively produced seeds.

Effects of Sasa borealis silage on proximate composition, amino acid and fatty acid contents, and antioxidant activity in fresh meat of Korean native goat fed with total mixed ration

  • Young-Jin Choi;Sang Uk Chung;Na Yeon Kim;Mirae Oh;Se Young Jang;Young Sik Yun;Sang Ho Moon
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • Jeju Sasa borealis (S. borealis) is indigenous to the Halla Mountain area of Jeju Island, Republic of Korea. However, its dominance has retarded the development of other plant species and lowered biodiversity in this region. The aim of this study was to determine whether S. borealis silage (SS) supplementation affects the chemical composition and antioxidant activity in the fresh meat of Korean native goats (Capra hircus coreanae). The experiment was conducted on 12 Korean native goats at the finisher stage. The feeding groups were the Control (total mixed ration, TMR) and the Treatment (80% TMR + 20% SS). The animals were adapted for two weeks and then subjected to a six-month breeding experiment. Meat samples were excised from the neck, loin, rib, front leg, and hind leg of the slaughtered animals. The meat derived from the treatment group contained more taurine and anserine than that derived from the control group. Both groups did not significantly differ in terms of ω-6/ω-3 fatty acid ratio. The loin and front leg of the treatment group contained significantly higher vitamin E levels than those of the control group. DPPH, ABTS, and FRAP analyses disclosed that the loin and front leg had significantly higher antioxidant activity (p<0.05) than the other parts. Moreover, the loin and front leg cuts of the treatment group had higher antioxidant activity than those of the control group. The present study demonstrated that S. borealis supplementation could effectively improve Korean native goat meat quality.

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Phylogenetic characteristics of actinobacterial population in bamboo (Sasa borealis) soil (조릿대 대나무림 토양 내 방선균군집의 계통학적 특성)

  • Lee, Hyo-Jin;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, a pyrosequencing was performed and analyzed to verify the phylogenetic diversity of actinomycetes in the bamboo (Sasa borealis) soil as a base study to obtain the genetic resources of actinomycetes. It was found that the rhizosphere soil had much various distribution in bacterial communities showing a diversity of 8.15 with 2,868 OTUs, while the litter layer showed a diversity of 7.55 with 2,588 OTUs. The bacterial community in the bamboo soil was composed of 35 phyla and the predominant phyla were Proteobacteria (51-60%), Bacteroidetes (16-20%), Acidobacteria (4-16%) and Actinobacteria (4-14%). In particular, Actinobacteria including Micromonosporaceae and Streptomycetaceae had a diverse distribution of actinomycetes within the six orders, 35 families and 121 genera, and it was characterized that about 83% of actinomycetes within Actinomycetales belonged to the 28 families. Among the dominant actinobacterial populations, Micromonosporaceae, Pseudonocardiaceae and Streptomycetaceae were representative family groups in the bamboo soils.

Protective Effects of Sasa Borealis Leaves Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 고농도 포도당으로 유도된 산화스트레스에 대한 조릿대잎 추출물의 보호효과)

  • Hwang, Ji-Young;Han, Ji-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1753-1760
    • /
    • 2010
  • This study was designed to investigate the protective effects of Sasa borealis leaves on high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). Freeze-dried Sasa borealis leaves were extracted with 70% methanol and followed by a sequential fractionation with dicholoromethan, ethyl acetate, butanol and water. The ethyl acetate fraction from Sasa borealis leaves extract (ESLE) was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. Exposure of HUVECs to 30 mM high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, glutathion (GSH) concentration, activities of antioxidant enzymes including superoxide dimutase (SOD), glutathion peroxidase (GSH-px) and catalase, and a significant (p<0.05) increase in intracellular ROS and lipid peroxidation formation in comparison to the cells treated with 5.5 mM glucose. ESLE treatment decreased intracellular ROS and lipid peroxidation formation and increased cell viability, GSH concentration and expressions of SOD and catalase in HUVECs. These results suggest that ESLE may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Effects of the Extract of Bamboo (Sasa borealis) Leaves on the Physical and Sensory Characteristics of Cooked Rice (조릿대잎 추출물이 흰밥의 물리적 및 관능적 특성에 미치는 영향)

  • Park, Yeon-Ok;Lim, Hyeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.908-914
    • /
    • 2007
  • Sasa borealis (bamboo) is a perennial medicinal plant and its leaves are utilized widely in Korea. In this study, effects of bamboo leaves (Sasa borealis) extract on the physical, textural, and sensory characteristics of cooked rice were examined. Four kinds of cooked rice were prepared with 0.0% (control), 0.2%, 0.3% or 0.4% of the extract (w/w). Moisture content of the cooked rice decreased with increasing amounts of extract. Color of the cooked rice was darkened gradually with increasing amounts of extract and appeared yellowish-brown. Among the four textural properties, only hardness increased significantly by the addition of the extract. Sensory evaluation was significantly different in terms of unique rice flavor, bamboo flavor, color, unique rice taste, bamboo taste, viscosity, hardness, adhesiveness, and coarseness among the control group and the group with 0.2%, 0.3%, and 0.4% of the extract; however, overall acceptancy was not significantly different among the four groups. In conclusion, concerning overall sensory evaluation, cooked rice with 0.2% bamboo leaves (Sasa borealis) extract showed the best result.

Distribution, abundance, and effect on plant species diversity of Sasa borealis in Korean forests

  • Cho, Soyeon;Lee, Kyungeun;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Background: Sasa borealis (Hack.) Makino, a clonal dwarf bamboo, is widespread in Korean forests. Although S. borealis is native to that country, its growth habit can cause considerable harm when occupying particular areas where it dominates and influences those forested communities. However, few reports have described the extent of its inhibitory effects on the vigor of co-existing plant species. Therefore, we investigated the distribution, abundance, and diversity of other plant species in the communities where this plant occurs in the east-central forests on the Korean Peninsula. Results: S. borealis was most commonly found at an elevational range of 800 to 1,200 m, on gentle, usually lower, and near valley northern slopes. Out of the 13 forest communities based on 447 forest stands that we surveyed, S. borealis was detected in eight communities, mostly where Quercus mongolica dominates. In particular, it was more common in late-successional mixed stands of Q. mongolica, other deciduous species, and the coniferous Abies holophylla. Because of their ability to expand rapidly in the forest, this plant covered more than 50% of the surface in most of our research plots. Species diversity declined significantly (F = 78.7, p = 0.000) as the abundance of S. borealis increased in the herb stratum. The same trend was noted for the total number of species (F = 18.1, p = 0.000) and species evenness (F = 91.5, p = 0.000). Conclusions: These findings clearly demonstrate that S. borealis is a weed pest and severely hinders species diversity. Authorities should be implementing various measures for ecological control to take advantage of declining chance after the recent synchronized massive flowering of S. borealis.