• 제목/요약/키워드: SAS E-miner

검색결과 10건 처리시간 0.025초

국내외 경제지표를 예측변수로 사용한 산업별 주가지수 예측 (Prediction of the industrial stock price index using domestic and foreign economic indices)

  • 최익선;강동식;이정호;강민우;송다영;신서희;손영숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.271-283
    • /
    • 2012
  • 본 연구에서는 모든 산업을 총합한 종합주가지수 예측을 다루는 기존의 연구들과는 달리 11개의 대표 산업별 주가지수의 상승 및 하락을 예측하였다. 해외경제상황에 큰 영향을 받는 우리나라 주식 시장을 고려하여 국내 경제지표뿐만 아니라 미국, 일본, 중국, 유럽의 주요 경제지표를 예측변수로 사용하였다. 2001년부터 2011년까지 총 132개의 월별 자료에 대하여 로지스틱 회귀모형과 신경망모형에 의한 분석은 대체로 60% 내외의 정확도를 보였다.

모바일 컴퓨팅 환경에서 협업추천 모형을 이용한 캐시 적재 기법 (A Cache Hoarding Method Using Collaborative Filtering in Mobile Computing Environments)

  • 전성해;정성원;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.687-692
    • /
    • 2004
  • 본 논문은 낮은 대역폭, 장시간의 지연, 그리고 잦은 네트워크 단절로 인한 정보 서비스 공백에 대한 모바일 컴퓨팅 환경의 문제점들을 해결하기 위하여 협업추천 모형에 의한 효과적인 캐시 적재 기법을 제안하였다. 효과적인 캐시 적재가 모바일 클라이언트의 이러한 문제점들을 해결하기 위한 적절한 방법이 된다는 기존의 연구는 많이 진행되어 왔다. 하지만 모바일 컴퓨터의 요구에 대한 이력 정보만을 이용한 기존의 연구는 모바일 클라이언트가 필요로 하는 모든 정보 요구를 만족하지 못하였다. 특히 저장 공간의 제약을 갖는 모바일 컴퓨터의 한계 때문에 더욱 큰 어려움을 갖게 되었다. 본 연구에서는 모바일 클라이언트의 이력 정보에 대하여 협업추천 모형을 적용한 캐시 적재 기법을 제안하여 적은 캐시 용량만으로도 모바일 클라이언트의 정보 요구를 만족하는 아이템들을 서비스할 수 있도록 하였다. SAS E-Miner를 이용하여 모의실험 데이터를 생성하여, 제안 모형의 성능 평가를 위한 실험을 수행하였다. Cache hit ratio를 이용한 객관적인 성능 평가를 통하여 제안된 모형의 성능을 확인하였다.

데이터 마이닝을 이용한 서울시교직원의 피로요인 탐색연구 (An Exploratory Study of Fatigue Related Factors among School Personnelin Seoul by Data mining)

  • 이희우;신선미
    • 한국학교보건학회지
    • /
    • 제19권1호
    • /
    • pp.79-88
    • /
    • 2006
  • Purpose : To identify general characteristics of school personnel with recent fatigue which was the most frequent symptom among subjective symptoms and to explore fatigue-related factors by evaluating physical and perceived health status, life style, and symptoms through data mining techniques. Methods : We collected a data of the 1,147(male 545, female 602) who were elementary, middle, or high school personnel, answered a questionnaire, and received physical examination in Seoul School Health Center from September to November in 2000. And we investigated the differences between fatigue group and non-fatigue group for demographic characteristics, physical health status, perceived health status, symptoms, and laboratory values by frequency, chi-square test, t-test, or simple logistic regression analysis by SAS package 8.1, and then selected significant variables as input variables of a decision tree analysis of CART model by SAS E-miner. Results : In general characteristics, the fatigue consisted of 41.1%(male 35.2%, female 46.4%) among 1,147 school personnel. In classical statistics, factors related with fatigue were female, lower means of systolic and diastolic pressure, young age, personnel in middle school, irregular eating habit, no exercise a week or less than 30minutes exercise a day, perception of unhealthy status, and subjective symptoms including short of breath at exercise. In simple logistic regression to examine the relationship between selected independent variables and fatigue as a dependent variable, the odds ratio of gender (female vs male) was 1.58 times, and young age ( 20s vs 60s) 20.67 times, and middle vs high school personnel 1.86 times. However, we mined combined several characteristics by SAS-E miner. In CART model, if health perception was healthy, and age was >= 37.5 years, the proportion of the fatigue was only 19.3%. but if health perception was not healthy and symptom was severe 'short of breath' during exercise and age was < 53.5 years, and BMI was >= 22.69, the proportion of the fatigue was up to 84.8%. Conclusions : The fatigue consisted of 41.1%(male 35.2%, female 46.4%). In classical statistics, fatigue-related factors among school personnel were young age, female gender, perceived unhealthy status, subjective physical symptoms, poor life-style, and lower blood pressure rather than only physical health status. However, in data mining, if health perception was healthy and age was >= 37.5 years, the proportion of the fatigue was only 19.3%. but if health perception was not healthy and symptom was severe 'short of breath' during exercise and age was < 53.5 years, and BMI was >= 22.69, the proportion of the fatigue was up to 84.8%.

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

고등학교 3학년 학생들이 인지한 위염 및 장염 관련요인 -2009년 청소년 건강행태 온라인 조사 자료를 중심으로- (The Related Factors to Perceived gastritis or Perceived enteritis in High school seniors -the 2009 Korea Youth Risk Behavior Web-based Survey-)

  • 배상숙
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.668-677
    • /
    • 2012
  • 이 연구는 2009년 청소년 건강행태온라인조사에 참여한 우리나라 고등학교 3학년 학생 11,753명을 대상으로 위염 및 장염에 영향을 미치는 관련 요인들을 알아보기 위해 SAS 9.2 version, E-Miner를 이용하여 서베이 로지스틱과 의사결정나무분석을 하였다. 대상자중 남자가 5,685명(47.6%), 여자가 6,068명(52.4%) 이었으며 '오랫동안 위염 및 장염을 앓고 있다'고 응답한 응답자는 8.7% 이었고, 여자가 위염 및 장염 발생률이 조금 더 높게 나타났다(P<.001). 위염 및 장염 발생에 스트레스 및 건강행태는 양의 상관관계가 있는 것으로 나타났으며 스트레스 인지가 높을수록, 주관적 건강상태가 좋지 않을수록, 흡연, 자살생각, 자살시도, 심한 음주나 13세 이전에 음주를 시작 할수록, 대상자의 위염 및 장염 발생에 유의하게 영향을 미치는 것으로 나타났다.(P<.001) 따라서 청소년의 위염 및 장염인지에 대한 호소에 관심과 면밀한 평가 및 관리에 대한 간호중재가 필요할 것으로 여겨진다.

데이타마이닝을 이용(利用)한 CRM 사례연구(事例硏究) - A 패션기업(企業)을 중심(中心)으로 - (A CRM Study on the Using of Data Mining - Focusing on the "A" Fashion Company -)

  • 이유순
    • 패션비즈니스
    • /
    • 제6권5호
    • /
    • pp.136-150
    • /
    • 2002
  • In this study, we proposed a method to be standing customers as the supporting system for the improvement of fashion garment industry which was the marginal growth getting into full maturity of market. As for the customer creation method of Fashion garment company is developing a marketing program to be standing customer as customer scoring to estimate a existing customer‘s buying power, and figure out minimum fixed sales of company to use a future purchasing predict. This study was a result of data from total sixty thousands data to be created for the 11 months from september. 2000 to July. 2001. The data is part of which the company leading the Korean fashion garment industry has a lot of a customer purchasing history data. But this study used only 48,845 refined purchased data to discriminate from sixty thousands data and 21,496 customer case with the exception of overlapping purchased data among of those. The software used to handle sixty thousands data was SAS e-miner. As the analysis process is put in to operation the analysis of the purchasing customer’s profile firstly, and the second come into basket analysis to consider the buying associations for Association goods, the third estimate the customer grade of Customer loyalty by 3 ways of logit regression analysis, decision tree, Artificial Neural Network. The result suggested a method to be estimate the customer loyalty as 3 independent variables, 2 coefficients. The 3 independent variables are total purchasing amount, purchasing items per one purchase, payment amount by one purchasing item. The 2 coefficients are royal and normal for customer segmentation. The result was that this model use a logit regression analysis was valid as the method to be estimate the customer loyalty.

데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발 (Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining)

  • 윤승진;김수환;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • 최근, 군에서 가장 이슈가 되고 있는 문제는 기강 해이, 복무 부적응 등으로 인한 병력 사고이다. 이 같은 사고를 예방하는 데 있어 가장 중요한 것은, 사고의 요인이 될 수 있는 문제를 사전에 식별 관리하는 것이다. 이를 위해서 지휘관들은 병사들과의 면담, 생활관 순찰, 부모님과의 대화 등 나름대로의 노력을 기울이고 있기는 하지만, 지휘관 개개인의 역량에 따라 사고 징후를 식별하는 데 큰 차이가 나는 것이 현실이다. 본 연구에서는 이러한 문제점을 극복하고자 모든 지휘관들이 쉽게 획득 가능한 객관적 데이터를 활용하여 사고를 예측해 보려 한다. 최근에는 병사들의 생활지도기록부 DB화가 잘 되어있을 뿐 아니라 지휘관들이 병사들과 SNS상에서 소통하며 정보를 얻기 때문에 이를 데이터화 하여 잘 활용한다면 병사들의 사고예측 및 예방이 가능하다고 판단하였다. 본 연구는 이러한 병사의 내부데이터(생활지도기록부) 및 외부데이터(SNS)를 활용하여 그들의 관심분야를 파악하고 사고를 예측, 이를 지휘에 활용하는 데이터마이닝 문제를 다루며, 그 방법으로 토픽분석 및 의사결정나무 방법을 제안한다. 연구는 크게 두 흐름으로 진행하였다. 첫 번째는 병사들의 SNS에서 토픽을 분석하고 이를 독립변수화 하였고 두 번째는 병사들의 내부데이터에 이 토픽분석결과를 독립변수로 추가하여 의사결정나무를 수행하였다. 이 때 종속변수는 병사들의 사고유무이다. 분석결과 사고 예측 정확도가 약 92%로 뛰어난 예측력을 보였다. 본 연구를 기반으로 향후 장병들의 사고예측을 과학적으로 분석, 맞춤식으로 관리한다면 군대 내 각종 사고를 미연에 예방하는데 기여할 것으로 기대된다.

사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용 (A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps)

  • 전병국;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.1-18
    • /
    • 2015
  • 협업 필터링은 학계나 산업계에서 우수한 성능으로 인해 많이 사용되는 추천기법이지만, 정량적 정보인 사용자들의 평가점수에만 국한하여 추천결과를 생성하므로 간혹 정확도가 떨어지는 문제가 발생한다. 이에 새로운 정보를 추가로 고려하여, 협업 필터링의 성능을 개선하려는 연구들이 지금까지 다양하게 시도되어 왔다. 본 연구는 최근 Web 2.0 시대의 도래로 인해 사용자들이 구입한 상품에 대한 솔직한 의견을 인터넷 상에 자유롭게 표현한다는 점에 착안하여, 사용자가 직접 작성한 리뷰를 참고하여 협업 필터링의 성능을 개선하는 새로운 추천 알고리즘을 제안하고, 이를 스마트폰 앱 추천 시스템에 적용하였다. 정성 정보인 사용자 리뷰를 정량화하기 위해 본 연구에서는 텍스트 마이닝을 활용하였다. 구체적으로 본 연구의 추천시스템은 사용자간 유사도를 산출할 때, 사용자 리뷰의 유사도를 추가로 반영하여 보다 정밀하게 사용자간 유사도를 산출할 수 있도록 하였다. 이 때, 사용자 리뷰의 유사도를 산출하는 접근법으로 중복 사용된 색인어의 빈도로 산출하는 방안과 TF-IDF(Term Frequency - Inverse Document Frequency) 가중치 합으로 산출하는 2가지 방안을 제시한 뒤 그 성능을 비교해 보았다. 실험결과, 제안 알고리즘을 통한 추천, 즉 사용자 리뷰의 유사도를 추가로 반영하는 알고리즘이 평점만을 고려하는 전통적인 협업 필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인할 수 있었다. 아울러, 중복 사용 단어의 TF-IDF 가중치의 합을 고려했을 때, 단순히 중복 사용 단어의 빈도만을 고려했을 때 보다 조금 더 나은 예측정확도를 얻을 수 있음도 함께 확인할 수 있었다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법 (A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data)

  • 김민정;조윤호
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.93-110
    • /
    • 2015
  • 기존의 협업필터링 추천시스템 연구는 상품에 대한 고객의 평점(rating)이나 구매 여부 데이터로부터 하나의 프로파일을 생성하고 이를 기반으로 추천 성능을 향상시킬 수 있는 새로운 알고리즘을 개발하는 위주로 진행되어 왔다. 그러나 빅데이터 환경이 도래하면서 기업이 수집할 수 있는 고객 데이터가 풍부해지고 다양해짐에 따라, 보다 정확하게 고객의 선호도나 행태를 파악하는 것이 가능하게 되었고 이러한 데이터, 즉 퍼스널 빅데이터(personal big data)를 추천시스템에 활용하는 연구의 필요성이 대두되고 있다. 본 연구에서는 마케팅의 시장세분화 이론에 근거하여 퍼스널 빅데이터로부터 고객의 선호도나 행태를 다양한 관점에서 표현할 수 있는 5종의 다중 프로파일(multimodal profile)을 개발하고, 이를 활용하여 협업필터링 추천시스템의 성능을 개선하고자 한다. 제안하는 5종의 다중 프로파일은 프로파일 통합 유사도, 개별 프로파일 유사도 평균, 개별 프로파일 유사도 가중 평균이라는 세 가지 앙상블 기법을 통해 협업필터링의 이웃(neighborhood) 탐색과정에 적용된다. 실제 퍼스널 빅데이터에 본 연구에서 제안하는 방법론을 적용한 결과, 단일 프로파일을 사용하는 협업필터링 알고리즘보다 추천 성능이 상당히 개선되었으며 앙상블 방법 중에서는 개별 프로파일 유사도 가중 평균 기법이 가장 높은 추천 성능을 보여주었다. 본 연구는 빅데이터 환경에서 추천시스템을 개발하고자 할 때, 어떠한 성격의 데이터로부터 고객의 특성을 규명하는 프로파일을 만들고 이를 어떻게 결합하여 사용하는 것이 효과적인 지 처음으로 제안하였다는 점에서 그 의의가 있다.