• 제목/요약/키워드: SARS-CoV

Search Result 334, Processing Time 0.026 seconds

Cleavage Site Prediction Using the Rule Extracted from Knowledge-Based Genetic Algorithm (지식기반 유전자 알고리즘에서 추출된 규칙을 이용한 Cleavage Site 예측)

  • Cho Yeun-Jin;Kim Hyeoncheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.247-249
    • /
    • 2005
  • Cleavage Site 분석 및 예측은 바이러스 증식에 필요한 핵심 단백질인 Protease$(3CL^{pro})$를 예측하게 하고, 예측한 Protease의 활성을 억제함으로써 바이러스 중식을 저지하게 된다. 본 연구에서는 신경망과 결정트리, 유전자 알고리즘을 이용하여 SARS-CoV의 cleavage site를 분석하고, 학습 결과에서 추출된 규칙(Rule)에 의해 cleavage site를 예측한다. 또한 신경망에서 학습된 지식(Knowledge)을 이용하여 유전자 알고리즘의 성능을 향상시키는 지식기반 유전자 알고리즘 (KBGA: Knowledge-Based Genetic Algorithm)을 제안한다.

  • PDF

Updates on the coronavirus disease 2019 vaccine and consideration in children

  • Kang, Hyun Mi;Choi, Eun Hwa;Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.7
    • /
    • pp.328-338
    • /
    • 2021
  • Humanity has been suffering from the global severe acute respiratory syndrome coronavirus 2 pandemic that began late in 2019. In 2020, for the first time in history, new vaccine platforms-including mRNA vaccines and viral vector-based DNA vaccines-have been given emergency use authorization, leading to mass vaccinations. The purpose of this article is to review the currently most widely used coronavirus disease 2019 vaccines, investigate their immunogenicity and efficacy data, and analyze the vaccine safety profiles that have been published, to date.

A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization

  • Mattoo, Sameer-ul-Salam;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1601-1614
    • /
    • 2021
  • To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.

Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic

  • Jung, Eui-Man;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.331-336
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.

Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches

  • Choi, Hojun;Shin, Eui-Cheol
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.

COVID-19 and Sleep (코로나바이러스감염증-19와 수면)

  • Jaegong, Cyn
    • Sleep Medicine and Psychophysiology
    • /
    • v.29 no.2
    • /
    • pp.29-34
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), which was a global pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), is still a serious public health problem. COVID-19 causes various symptoms not only in the respiratory system but also in various parts of the body and has a significant effect on sleep. Insomnia and poor sleep quality were observed at high rates in patients with COVID-19 as well as in the uninfected general population. Obstructive sleep apnea is also considered a risk factor in patients with severe COVID-19. Virus-induced central nervous system damage is likely to be the cause of many sleep disorders in COVID-19, but psychosocial influences also seem to have played a significant role. Sleep problems persisted at high rates for a considerable period after the infection phase was over. More attention and research on the effect of COVID-19 on sleep is needed in the future.

Coronavirus disease 2019 (COVID-19) vaccine platforms: how novel platforms can prepare us for future pandemics: a narrative review

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.89-97
    • /
    • 2022
  • More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.

Does IFITM3 link inflammation to tumorigenesis?

  • Jaewoong, Lee
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.602-608
    • /
    • 2022
  • Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed.

Rapid progression of large intracranial cerebral artery involvement in a patient with myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis

  • Jihee Ko;Jay Chol Choi
    • Journal of Medicine and Life Science
    • /
    • v.21 no.1
    • /
    • pp.15-19
    • /
    • 2024
  • Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic necrotizing vasculitis that predominantly affects small vessels of the body. The two most common ANCAs are myeloperoxidase ANCA and proteinase 3 ANCA. Neurological manifestations are frequent in patients with AAV, including peripheral neuropathy, meningitis, and stroke. AAV-associated ischemic stroke usually affects small vessels supplying the white matter or brainstem. This case report details the presentation and treatment course of a 70-year-old man with rapidly progressive multiple intracranial large artery involvement attributed to myeloperoxidase ANCA-associated vasculitis. Despite treatment with high-dose steroids and a rituximab infusion, the patient developed new speech difficulties and respiratory distress, and brain imaging confirmed new stroke lesions with progressive multiple intracranial large cerebral artery involvement. The patient died from SARS-CoV-2 infection 4 months after the diagnosis. This case emphasized the rare presentation of rapidly progressive large vessel involvement in a patient with myeloperoxidase ANCA-associated vasculitis despite active immunotherapy.

Halo, Reversed Halo, or Both? Atypical Computed Tomography Manifestations of Coronavirus Disease (COVID-19) Pneumonia: The "Double Halo Sign"

  • Antonio Poerio;Matilde Sartoni;Giammichele Lazzari;Michele Valli;Miria Morsiani;Maurizio Zompatori
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1161-1164
    • /
    • 2020
  • The epidemic of 2019 novel coronavirus, later named as coronavirus disease (COVID-19), began in Wuhan, China in December 2019 and has spread rapidly worldwide. Early diagnosis is crucial for the management of the patients with COVID-19, but the gold standard diagnostic test for this infection, the reverse transcriptase polymerase chain reaction, has a low sensitivity and an increased turnaround time. In this scenario, chest computed tomography (CT) could play a key role for an early diagnosis of COVID-19 pneumonia. Here, we have reported a confirmed case of COVID-19 with an atypical CT presentation showing a "double halo sign," which we believe represents the pathological spectrum of this viral pneumonia.