• Title/Summary/Keyword: SARS

Search Result 458, Processing Time 0.027 seconds

Are Patients with Asthma and Chronic Obstructive Pulmonary Disease Preferred Targets of COVID-19?

  • Bouazza, Belaid;Hadj-Said, Dihia;Pescatore, Karen A.;Chahed, Rachid
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.22-34
    • /
    • 2021
  • The coronavirus pandemic, known as coronavirus disease 2019 (COVID-19), is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus first identified in patients from Wuhan, China. Since December 2019, SARS-CoV-2 has spread swiftly around the world, infected more than 25 million people, and caused more than 800,000 deaths in 188 countries. Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) appear to be risk factors for COVID-19, however, their prevalence remains controversial. In fact, studies in China reported lower rates of chronic respiratory conditions in patients with COVID-19 than in the general population, while the trend is reversed in the United States and Europe. Although the underlying molecular mechanisms of a possible interaction between COVID-19 and chronic respiratory diseases remain unknown, some observations can help to elucidate them. Indeed, physiological changes, immune response, or medications used against SARS-CoV-2 may have a greater impact on patients with chronic respiratory conditions already debilitated by chronic inflammation, dyspnea, and the use of immunosuppressant drugs like corticosteroids. In this review, we discuss importance and the impact of COVID-19 on asthma and COPD patients, the possible available treatments, and patient management during the pandemic.

The pros and cons of entry restrictions: are entry restrictions really effective in preventing the spread of SARS-CoV-2?

  • Park, Donghwi;Boudier-Reveret, Mathieu;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.4
    • /
    • pp.344-346
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide, leading the World Health Organization to declare coronavirus disease 2019 (COVID-19) a pandemic. To curb the unchecked spread of SARS-CoV-2 infection, most countries have enforced travel restrictions. However, it is debatable whether such restrictions are effective in containing infections and preventing pandemics. Rather, they may negatively impact economies and diplomatic relationships. Each government should conduct an extensive and appropriate analysis of its national economy, diplomatic status, and COVID-19 preparedness to decide whether it is best to restrict entering travelers. Even if travelers from other countries are allowed entry, extensive contact tracing is required to prevent the spread of COVID-19. In addition, governments can implement "travel bubbles," which allow the quarantine-free flow of people among countries with relatively low levels of community transmission. An accurate evaluation of the benefits and losses due to entry restrictions during the COVID-19 pandemic would be helpful in determining whether entry restrictions are an effective measure to reduce the spread of infection in future pandemics.

Reopening of dental clinics during SARS-CoV-2 pandemic: an evidence-based review of literature for clinical interventions

  • Keyhan, Seied Omid;Fallahi, Hamid Reza;Motamedi, Amin;Khoshkam, Vahid;Mehryar, Paymon;Moghaddas, Omid;Cheshmi, Behzad;Firoozi, Parsa;Yousefi, Parisa;Houshmand, Behzad
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.25.1-25.13
    • /
    • 2020
  • Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious acute respiratory diseases including pneumonia and bronchitis with approximately 2.3% fatality occurrence. Main body: This study argues the main concepts that need to be considered for the gradual reopening of dental offices include treatment planning approaches, fundamental elements needed to prevent transmission of SARS-CoV-2 virus in dental healthcare settings, personal protection equipment (PPE) for dental health care providers, environmental measures, adjunctive measures, and rapid point of care tests in dental offices. Conclusion: This article seeks to provide an overview of existing scientific evidence to suggest a guideline for reopening dental offices.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV-2

  • Han‑ul Kim;Hyun Suk Jung
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.13.1-13.7
    • /
    • 2021
  • The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has arisen as a global pandemic affecting the respiratory system showing acute respiratory distress syndrome (ARDS). However, there is no targeted therapeutic agent yet and due to the growing cases of infections and the rising death tolls, discovery of the possible drug is the need of the hour. In general, the study for discovering therapeutic agent for SARS-CoV-2 is largely focused on large-scale screening with fragment-based drug discovery (FBDD). With the recent advancement in cryo-electron microscopy (Cryo-EM), it has become one of the widely used tools in structural biology. It is effective in investigating the structure of numerous proteins in high-resolution and also had an intense influence on drug discovery, determining the binding reaction and regulation of known drugs as well as leading the design and development of new drug candidates. Here, we review the application of cryo-EM in a structure-based drug design (SBDD) and in silico screening of the recently acquired FBDD in SARS-CoV-2. Such insights will help deliver better understanding in the procurement of the effective remedial solution for this pandemic.

Peptide Domain Involved in the Interaction between Membrane Protein and Nucleocapsid Protein of SARS-associated Coronavirus

  • Fang, Xiaonan;Ye, Linbai;Timani, Khalid Amine;Li, Shanshan;Zen, Yingchun;Zhao, Meng;Zheng, Hong;Wu, Zhenghui
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.381-385
    • /
    • 2005
  • Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies.

Comparison of clinical diagnostic performance between commercial RRT-LAMP and RT-qPCR assays for SARS-CoV-2 detection

  • Kim, Hye-Ryung;Park, Jonghyun;Han, Hyung-Soo;Kim, Yu-Kyung;Jeon, Hyo-Sung;Park, Seung-Chun;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in isolating infected patients and preventing further viral transmission. In this study, we evaluated the clinical diagnostic performances of a commercial real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay (Isopollo® COVID-2 assay, M-monitor, Daegu, Korea) using eighty COVID-19 suspected clinical samples and compared these with the results of a commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) assay (AllplexTM 2019-nCoV rRT-QPCR Assay, SeeGene, Seoul, Korea). The results of the RRT-LAMP assay targeting the N or RdRp gene of SARS-CoV-2 showed perfect agreement with the RT-qPCR assay results in terms of detection. Furthermore, the RRT-LAMP assay was completed in just within a 20-min reaction time, which is significantly faster than about the 2 h currently required for the RT-qPCR assay, thus enabling prompt decision making regarding the isolation of infected patients. The RRT-LAMP assay will be a valuable tool for rapid, sensitive, and specific detection of SARS-CoV-2 in human or unexpected animal clinical cases.

Comparative Study of Target Genes and Protocols by Country for Detection of SARS-CoV-2 based on Polymerase Chain Reaction (PCR) (중합효소 연쇄반응 기반의 코로나-19 바이러스 검출법에 대한 국가별 목표 유전자 및 프로토콜 비교 연구)

  • Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.465-474
    • /
    • 2021
  • Corona-19, a disease caused by 'Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)', was declared a global pandemic by the World Health Organization (WHO) in March 2020, and a real-time polymerase chain reaction test is performed as a diagnostic test for screening and confirmation in most countries. However, not only the target genes and protocols differ by countries, but also the procedures for reading the diagnosis results are diverse, so the criteria for confirmed patients differ by country. Therefore, in this review, we discussed the target genes, test techniques, and diagnostic criteria for each country notified by WHO. And the specificity and sensitivity, limits of detection, positive and negative controls, false positive bacteria candidates, and specimens, and the specifics of the control setting were also described. In addition, the characteristics of Korea's test were compared to each country's one. Finally, in order to obtain the same diagnosis result for SARS-CoV-2 in the future, standardized diagnosis methods and result interpretations for Corona-19 diagnosis were proposed.

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

SARS-CoV-2 IgG Antibody Seroprevalence in Children from the Amritsar District of Punjab

  • Kaur, Amandeep;Singh, Narinder;Singh, Kanwardeep;Sidhu, Shailpreet Kaur;Kaur, Harleen;Jain, Poonam;Kaur, Manmeet;Jairath, Mohan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • The majority of the children experience milder coronavirus disease 2019 (COVID-19) symptoms. Children represent a significant source of community transmission. Children under 18 years of age account for an estimated 4.8% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections globally. However, no conclusive statements pertaining to the multi-fold aspects of the virus in children could be drawn due to the lower prevalence of pediatric cases. The present study was conducted to identify the indirect impact of SARS-CoV-2 infections on developing herd immunity among children in the age group 3 to 18 years by investigating their antibody levels. In the study, 240 children aged 3~18 years were recruited by the Department of Pediatrics, Government Medical College and Hospital, Amritsar, India, and quantification of the antibodies was performed at the Viral Research and Diagnostic Laboratory (VRDL), Government Medical College (GMC), Amritsar, India. Out of the 240 serum samples, 197 (82.08%) showed seropositivity, while 43 (17.92%) were seronegative. When stratified, it was observed that in the age group 3~6 years, 22.33% of children were found to have anti-SARS-CoV-2 antibodies while in the age groups 7~10 years, 11~14 years, and 15~18 years, respectively, 37.06%, 30.46%, and 10.15% were seropositive. Although there was seroconversion among children which was useful for predicting the next wave, no differences in seropositivity were observed between adults and children.