• Title/Summary/Keyword: SAR study

Search Result 639, Processing Time 0.03 seconds

Implementation about measurement of the head SAR and variable parameter according to operation control mode in brain MR study with 1.5Tesia (1.57 BRAIN MRI검사에서의 작동제어모드를 통한 두부 SAR측정과 변화인자에 관한 고찰)

  • Lee, Kyu-Su;Sim, Hyun;Moon, Ji-Hoon;Oh, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.58-60
    • /
    • 2007
  • Magnetic Resonance Imaging(MRI) has become a very widely used medical procedur e. Clo.sed and open systems are typically used with static magnetic fields at or below 2 Tesla. BWhole body SAR(specific absorbsion rate) is the value of SAR averaged over the entire body of the patient over any period of 15 minutes. Head SAR is the value of SAR averaged over the head of the patient for any period of 10 minutes. SAR is a measure of the absorption of electromagnetic energy in the body' (typically in watts per kilogram (W/kg)). The normal operating mode comprises values of head SAR not higher than 3 W/kg. The second level controlled operating mode comprises values higher than 3 W/kg. Current FDA guidance limits the SAR in the whole body. including the head to a range of 1.5 to 4.0 W/kg, depending on the patient's clinical condition. SAR, limit restrictions are incorporated in all MRI systems. and domestic' s guidance limits the SAR in a part body. including the head to 3.2w/kg and less. The purpose of this study is to evaluate on change of head SAR in using MRI pulse sequence and to check if exceed 3.2(w/kg) level in domestic a part exposure through measured head SAR. 23 patient's the average head SAR of pulse sequence is that T2WI sagittal is 0.5375. T2WI axial(FSE) is 0.4817, T1WI axial(SE) is, 0.8179. FLAIR axial is 0.4580. GRE axial is 0.0077, Diffusion is 0.0824w/kg. The head SAR exposed per patient was proved 2.3845w/kg less than the international standard. Coefficient of correlation for the relations body weight and SAR or for the relations ETL(echo train length) and SAR is 1 value. Coefficient of correlation for the relations between TR(time to repeat) and SAR is -0.602 value. so SAR increased relative to weight body and ETL. But the relations between TR and SAR is negative definite.

  • PDF

Study on the Requirement, Consideration, and Critical Baseline in SAR Design Process for the IFSAR Technique (IFSAR 기법 활용을 위해 SAR 설계시 요구조건, 고려사항 및 최대 베이스라인 연구)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1858-1863
    • /
    • 2001
  • SAR data consist of magnitude and phase, and IFSAR technique using phase data is very useful high technology Producing fee height information. To use IFSAR technique effectively in the operation of SAR, this paper suggests the essential requirement and main consideration during SAR design process. Also the critical baseline, one of the principal elements, is derived, and it proposes applicable method through the simulation and discussion to the E-SAR.

  • PDF

Bistatic Synthetic Aperture Radar Imaging Using a Monostatic Equivalent Model (모노스태틱 등가 모델을 활용한 바이스태틱 SAR 영상 형성에 관한 연구)

  • Ryu, Bo-Hyun;Kang, Byung-Soo;Lee, Myung-Jun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.693-700
    • /
    • 2018
  • In this paper, we propose a method to generate SAR(synthetic aperture radar) images for bistatic radar. The bistatic SAR can overcome several limitations of monostatic SAR, because the former can be applied to a variety of scenarios, compared to the latter. However, no study has been conducted on bistatic SAR imaging so far. In this paper, we propose a method to generate bistatic SAR images using the monostatic equivalent model and conventional monostatic SAR imaging algorithms. Simulations using airborne SAR in the bistatic geometry validated the efficacy of the proposed method.

SAR Payload Technology for Next Generation Satellite (차세대 위성용 SAR 탑재체 기술)

  • Won, Young-Jin;Yoon, Jae-Cheol;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.131-141
    • /
    • 2014
  • Synthetic Aperture Radar (SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurements of the Earth surface independent of weather conditions and sunlight illumination. In this study, this paper first summarizes the basic SAR theory and the history of the SAR satellites. The second part of this paper gives an overview of new technologies for future SAR systems. New innovative concepts and technologies for SAR satellites will be digital beamforming, High Resolution Wide Swath (HRWS), Waveform Encoding, Terrain Observation by Progressive Scan (TOPS), and so on. These technologies will play an important role for future spaceborne SAR satellites.

Application of 2-pass DInSAR to Improve DEM Precision (DEM 정밀도 향상을 위한 2-pass DInSAR 방법의 적용)

  • 윤근원;김상완;민경덕;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In 2-pass differential SAR interferometry(DInSAR), the topographic phase signature can be removed by using a digital elevation model(DEM) to isolate the contribution of deformation from interferometric phase. This method has an advantage of no unwrapping process, but applicability is limited by precision of the DEM used. The residual phase in 2-pass differential interferogram accounts for error of DEM used in the processing provided that no actual deformation exits. The objective of this paper is a preliminary study to improve DEM precision using low precision DEM and 2-pass DInSAR technique, and we applied the 2-pass DInSAR technique to Asan area. ERS-1/2 tandem complex images and DTED level 0 DEM were used for DInSAR, and the precision of resulting DEM was estimated by a 1:25,000 digital map. The input DEM can be improved by simply adding the DInSAR output to the original low precision DEM. The absolute altitude error of the improved DEM is 9.7m, which is about the half to that of the original DTED level 0 data. And absolute altitude error of the improved DEM is better than that from InSAR technique, 15.8m. This approach has an advantage over the InSAR technique in efficiently reducing layover effects over steep slope region. This study demonstrates that 2-pass DInSAR can also be used to improve DEM precision.

Deformation monitoring of Daejeon City using ALOS-1 PALSAR - Comparing the results by PSInSAR and SqueeSAR - (ALOS-1 PALSAR 영상을 이용한 대전지역 변위 관측 - PSInSAR와 SqueeSAR 분석 결과 비교 -)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.567-577
    • /
    • 2016
  • SqueeSAR is a new technique to combine Persistent Scatterer (PS) and Distributed Scatterer (DS) for deformation monitoring. Although many PSs are available in urban areas, SqueeSAR analysis can be beneficial to increase the PS density in not only natural targets but also smooth surfaces in urban environment. The height of each targets is generally required to remove topographic phase in interferometric SAR processing. The result of PSInSAR analysis to use PS only is not affected by DEM resolution because the height error of initial input DEM at each PSs is precisely compensated in PS processing chain. On the contrary, SqueeSAR can be affected by DEM resolution and precision since it includes spatial average filtering for DS targets to increase a signal-to-noise ratio (SNR). In this study we observe the effect of DEM resolution on deformation measurement by PSInSAR and SqueeSAR. With ALOS-1 PALSAR L-band data, acquired over Daejeon city, Korea, two different DEM data are used in InSAR processing for comparison: 1 m LIDAR DEM and SRTM 1-arc (~30 m) DEM. As expected the results of PSInSAR analysis show almost same results independently of the kind of DEM, while the results of SqueeSAR analysis show the improvement in quality of the time-series in case of 1-m LIDAR DSM. The density of InSAR measurement points was also improved about five times more than the PSInSAR analysis.

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation (시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시)

  • Cho, Minji;Zhang, Lei;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.21-34
    • /
    • 2013
  • Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

A Study on High-Precision DEM Generation Using ERS-Envisat SAR Cross-Interferometry (ERS-Envisat SAR Cross-Interferomety를 이용한 고정밀 DEM 생성에 관한 연구)

  • Lee, Won-Jin;Jung, Hyung-Sup;Lu, Zhong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.431-439
    • /
    • 2010
  • Cross-interferometic synthetic aperture radar (CInSAR) technique from ERS-2 and Envisat images is capable of generating submeter-accuracy digital elevation model (DEM). However, it is very difficult to produce high-quality CInSAR-derived DEM due to the difference in the azimuth and range pixel size between ERS-2 and Envisat images as well as the small height ambiguity of CInSAR interferogram. In this study, we have proposed an efficient method to overcome the problems, produced a high-quality DEM over northern Alaska, and compared the CInSAR-derived DEM with the national elevation dataset (NED) DEM from U.S. Geological Survey. In the proposed method, azimuth common band filtering is applied in the radar raw data processing to mitigate the mis-registation due to the difference in the azimuth and range pixel size, and differential SAR interferogram (DInSAR) is used for reducing the unwrapping error occurred by the high fringe rate of CInSAR interferogram. Using the CInSAR DEM, we have identified and corrected man-made artifacts in the NED DEM. The wave number analysis further confirms that the CInSAR DEM has valid Signal in the high frequency of more than 0.08 radians/m (about 40m) while the NED DEM does not. Our results indicate that the CInSAR DEM is superior to the NED DEM in terms of both height precision and ground resolution.

SAR APPLICATION POLICY STUDY - ANALYSIS OF SAR-RELATED JOURNAL PAPERS

  • Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents a preliminary analysis result on SAR-related journal papers published since 1960s. Abstracts of more than 2700 peer-reviewed English journal papers were collected and classified into various categories according to their systems, techniques, and application fields. Statistics on each category were provided so that one can understand historical and on-going development in SAR systems, techniques, and a variety of application fields such as land, ocean, cryosphere and atmosphere. This statistical data would be an essential guideline to establish a future SAR system application and satellite manoeuvring policy.

  • PDF

Study of Mobile Phone Antenna for SAR Reduction Concerning Absorption Material Characteristic (흡수체 매질 특성을 고려한 이동통신 단말기 SAR 저감 방안 연구)

  • 정민석;이범선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.104-108
    • /
    • 2002
  • 본 논문에서는 전력보존에 근거하여 휴대 단말기에 의한 SAR 저감 방안을 제시한다. 흡수체 매질에서의 전파의 반사, 흡수 및 투과관계를 고찰하였으며 흡수체의 최대 흡수조건을 만족하기 위한 매질특성을 분석하였다. 정량적인 SAR 저감방식 논의를 위해 SRF(SAR Reduction Factor)를 정의한 후 다양한 흡수체의 구조에 따른 SAR 및 SRF를 분석하였다.

  • PDF