• 제목/요약/키워드: SAR satellite image

검색결과 163건 처리시간 0.025초

홍수매핑을 위한 레이더 영상 필터의 비교분석 (Comparative Analysis among Radar Image Filters for Flood Mapping)

  • 김대성;정형섭;백원경
    • 한국측량학회지
    • /
    • 제34권1호
    • /
    • pp.43-52
    • /
    • 2016
  • 기상과 시간의 제약을 받지 않고 영상을 획득할 수 있는 레이더 위성 영상은 오랫동안 홍수 탐지 분야에서 이용되어 왔다. 많은 연구들이 홍수를 효율적으로 탐지하기 위하여 다양한 기법들을 적용하였고 그 결과 홍수 지역의 탐지율은 비약적으로 상승하였다. 홍수는 침수피해를 유발하는 특성상 침수지와 비침수지의 경계 부분이 뚜렷하게 구분돼야하고 아주 세밀한 탐지가 가능해야한다. 이를 위해서는 레이더 자체의 해상도가 좋아야 할 뿐만 아니라 필터링 과정에서 해상도 저하를 최소화해야 한다. 레이더 위성의 해상도는 기술이 발전함에 따라 고해상도의 위성이 증가하고 있지만 필터링 기법을 달리하여 홍수 탐지의 정확도 및 효율성을 비교하여 홍수탐지에 적합한 필터링을 찾는 연구는 부족한 것이 현실이다. 본 연구에서는 Lee, Frost, NL-means(Non-Local means) 필터링을 위성레이더 영상에 적용하였고 필터링된 영상을 이용하여 홍수 지도를 생성한 뒤 각각의 결과를 비교하였다. Frost와 NL-means 필터는 Lee 필터에 비해 스펙클 노이즈를 저감하는데 효과적이었다. 하지만 Frost 필터의 경우에는 해상도의 저하가 심하다는 문제가 있었다. NL-means 필터는 다른 필터에 비해 shadow 현상을 효과적으로 제거하지 못하였고 이로 인해 잘못 탐지되는 픽셀이 존재한다는 문제가 있었다. 그럼에도 전체 영상의 픽셀 수에 비해 shadow 효과의 영향을 받아 오탐지되는 픽셀 수가 많지 않기 때문에 NL-means 필터를 이용한 경우가 가장 높은 홍수 탐지율을 보였다. 테스트 지역에서 필터링이 적용되지 않은 영상을 이용하여 홍수를 탐지한 경우 카파계수가 0.55로 나타났고 Lee, Frost, NL-means 필터를 적용한 경우 각각 0.64, 0.74, 0.81로 나타났다. 또한 NL-means 필터를 적용한 영상은 해상도의 변화가 거의 없는 상태에서 노이즈를 효과적으로 감소하였기 때문에 침수지와 비침수지의 경계를 가장 명확하게 구분할 수 있어 효과적으로 분석 결과를 도출하였다.

Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정 (Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images)

  • 손무빈;정지훈;이용관;우소영;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

영상의 물리적 센서모델을 이용한 RPC 모델 추출 (RPC Model Generation from the Physical Sensor Model)

  • 김혜진;이재빈;김용일
    • 대한공간정보학회지
    • /
    • 제11권4호
    • /
    • pp.21-27
    • /
    • 2003
  • IKONOS 2호와 QuickBird 2호의 센서 모델로서 제공되는 RPC(rational polynomial coefficients) 모델은 물리적 센서 모델의 대체 모델로 다양한 센서에 적용 가능하다. 고해상도 위성들이 상용화되면서 각기 센서들의 복잡성과 보안성 문제로 인해 물리적 센서모델을 대체할 수 있는 센서 모델로서 RPC의 활용도가 높아지고 있다. 대표적인 상업용 고해상도 위성인 IKONOS 2호는 물리적 센서 모델을 공개하지 않고 각영상에 대한 RPC만을 제공하며 QuckBird 영상은 센서의 기하 정보와 함께 RPC를 제공한다. 이에 본 연구에서는 물리적 센서모델로부터 RPC를 추출하는 원천 기술을 확보하고 RPC의 물리적 센서모델에 대한대체 적합성을 평가해보고자 하였다. 이를 위해 공간해상도가 높은 항공사진과 국내 위성인 KOMPSAT 1호의 기하 모델로부터 분모식과 차수를 달리하는 RPC모델들을 추출하는 실험을 수행하였다. 최소제곱법을 통해 RPC 초기값을 구하고 Levenberg Marquardt 기법을 이용하여 반복 조정한 RPC를 물리적 센서 모델과 비교 평가하여 최적의 RPC를 결정하였다. 그 결과 항공사진은 분모식이 동일한 1차 RPC가 KOMPSAT 1호는 분모식이 상이한 3차 RPC가 가장 정확도가 높았으며 각 오차(RMSE)는 $2{\times}10^{-5}$ 화소 이하로 나타났다.

  • PDF