• Title/Summary/Keyword: SAR Measurement

Search Result 132, Processing Time 0.023 seconds

Measurement Data Comparison of Fast SAR Measurement System by Probe Arrays with Robot Scanning SAR Measurement System

  • Kim, Jun Hee;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • Dosimetry of radiating electromagnetic wave from mobile devices to human body has been evaluated by measuring Specific Absorption Rate (SAR). Usual SAR measurement system scans the volume by robot arm to evaluate RF power absorption to human body from wireless devices. It is possible to fast estimate the volume SAR by software deleting robot moving time with the 2D surface SAR data acquired by arrayed probes. This paper shows the principle of fast SAR measurement and the measured data comparison between the fast SAR system and the robot scanning system. Data of the fast SAR is well corresponding with data of robot scanning SAR within ${\pm}3$ dB, and its dynamic range covers from 10 mW/kg to 30 W/kg with 4.8 mm probe diameter.

A Study on the SAR Measurement System Validation at 150 MHz Band (150 MHz 대역에서의 SAR 측정시스템의 유효성 연구)

  • Choi, Donggeun;Kim, Kihwea;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1008-1016
    • /
    • 2013
  • SAR measurement which was applied only to the mobile phone has been expanded in the Korean radio regulation law to the portable wireless communication equipments within 20 cm from the human body since Jan. 2012. The two-way radio operating at 150 MHz frequency band was newly included following the revised radio regulation in the target equipment of measurement. SAR measurement system at 150 MHz satisfying this regulation is necessary accordingly for SAR conformity assessment. The international SAR measurement standard(IEC 62209-2) includes the evaluation method on frequencies above 300 MHz, and the commercial SAR measurement system can measure SAR above 300 MHz only. The size of the reference dipole antenna(760 mm, return loss: -27.57 dB) and flat phantom ($1,300 mm(L){\times}900 mm(W){\times}200 mm(H)$), targeted SAR values for numerical analysis(1 g: 1.08 W/kg, 10 g: 0.77 W/kg) for SAR validation evaluation at 150 MHz frequency are proposed in this paper. The suggested dipole antenna and flat phantom are assembled and used to verify the conformity assessment of commercial SAR measurement system. The measured SAR values of 1 g and 10 g were obtained respectively to be 1.13 W/kg, 0.81 W/kg, and they satisfied the effective range(within ${\pm}10$ %) of IEC international standard. The standards based on this study are expected to be used for the domestic SAR measurement standard and IEC(International Electrotechnical Commission) international standard.

Implementation of SAR Measurement System with Stationary Probes (Probe 고정형 SAR 측정 시스템의 구현)

  • Kim Jeong-Ho;Gimm Youn-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.221-227
    • /
    • 2006
  • The SAR evaluation system with 9 stationary probes inserted into the object to be surveyed can calculate area SAR value based on the 9 measured electric field data. The results can be acquired in a few seconds by converting obtained area SAR to the volume SAR. The system can be very useful tool in the stages of handset development for mobile communication as well as in the handset production line because of its rapid SAR measurement ability. The validity of the measurement system is checked by showing that the measured SAR values agree well with reference SAR values suggested in the reference documents.

Implementation of SAR Measurement System with Stationary Probes (Probe 고정형 SAR 측정 시스템)

  • Kim, Jeong-Ho;Gimm, Youn-Myoung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.443-447
    • /
    • 2005
  • The SAR measurement system with stationary probes, presented in this paper, can calculate area SAR value based ell the measured 9 electric field data. By converting obtained area SAR to the volume SAR, the results can be acquired in a few seconds. The system can be very useful tool in the stages of handset development for mobile communication as well as in the handset production line because of its rapid SAR measurement. The system showed good linearity characteristics at 835 MHz of 10 $\sim$ 27 dBm input power range.

  • PDF

The Characteristics of Internal Waves Observed by SAR and in-situ Measurement Data Near Ocheong-Do in the Yellow Sea (SAR와 현장관측에 의한 황해 어청도 주변 해역에서의 내부파 특성)

  • 김태림;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.132-137
    • /
    • 2003
  • Observations of internal waves in the southwest coastal waters of Korea have been made using a mooring measurement and satellite SAR together. From May 28 to May 30 in 2002, thermistor chains with RCM and ADCP mooring measurements were carried out at 10 kin west of Ocheong-Do, together with a CTD field sur-vey on the surrounding waters. Also, a SAR image was acquired on May 29 at 06:53. The data from the in-situ measurement show several internal wave packets passing through the mooring point and the SAR image reveals numbers of internal wave packets distributed around the point. Temporal and spatial characteristics of internal waves in the southwest coastal waters were analyzed using the data from mooring measurement, SAR image, and the K-dv equation. The internal waves are important phenomena in terms of physical oceanography and military as well as marine biology. They should be considered as one of important features in the southwest coastal waters in summer.

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

SAR Analysis for Test Positions of Mobile Phone (휴대전화의 시험위치에 따른 SAR 분석)

  • 최형도;이애경;조광윤;오학태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1199-1205
    • /
    • 2001
  • There has been an increase in the public concern about possible health risks by electromagnetic exposure from mobile phones. Recently, several SAR measurement procedures have been proposed to demonstrate the compliance of mobile phone with safety limits. To determine the maximum localized SAR of a test mobile phone, the electric field distribution is measured in the head phantom with simulated tissue liquid using the probe The important parameters in SAR measurement are the E-field probe, the shape and size of phantom, the electrical parameters of simulated tissue liquid, and test position, etc. Therefore, in order to setup the measurement standard, the studies on these factors are required. In this paper, the effects of the maximum localized SAR on the test positions of mobile phones were analyzed by the numerical computation and the SAR measurement. From the results, the worst condition of commonly used positions was determined and the touch and tilted positions were adopted as test positions of the domestic SAR measurement standard.

  • PDF

Formulation of the Sucrose-Free Simulant Human Tissue for SAR Measurement at CDMA Mobile Band

  • Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2007
  • A general method to formulate the tissue-equivalent liquids for SAR measurement is proposed to make sucrose-free brain tissue applicable at 835 MHz as an example We suggest the tissue composition can be determined by measuring the dielectric constants and conductivities with the DI water and salt addition variation to the pre-manufactured auxiliary liquid of DGBE and TritonX-100 The manufactured liquid satisfies the specified electrical parameters of international standard at 835 MHz.

Characteristics of the Detection Voltages of an E-field Sensing Probe in SAR Measurement System (전자파 비흡수율(SAR) 측정용 전기장 프로브의 검파 전압 특성)

  • Gimm Youn-Myoung;Lee Seung-Bae;Kim Ki-Hwea
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.217-221
    • /
    • 2005
  • The E-field intensity by mobile handsets in a phantom is measured by a 3 axes miniature probe. The detected DC voltage by a Schottky diode in a probe has nonlinear characteristics by itself. If a pertinent diode compression point (DCP) is applied for the compensation specific absorption rate(SAR) as much as 200 W/kg can be measured with a good measurement accuracy.

Analysis and Compensation of Time Synchronization Error on SAR Image (시각 동기화 오차가 SAR 영상에 미치는 영향 분석 및 보상)

  • Lee, Soojeong;Park, Woo Jung;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.285-293
    • /
    • 2020
  • In this paper, to improve Synthetic Aperture Radar (SAR) image quality, the effect of time synchronization error in the EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) integrated system is analyzed and state augmentation is applied to compensate it. EGI/IMU integrated system is widely used as a SAR motion measurement algorithm, which consists of EGI mounted to obtain the trajectory and IMU mounted on the SAR antenna. In an EGI/IMU integrated system, a time synchronization error occurs when the clocks of the sensors are not synchronized. Analysis of the effect of time synchronization error on navigation solutions and SAR images confirmed that the time synchronization error deteriorates SAR image quality. The state augmentation is applied to compensate for this and as a result, the SAR image quality does not decrease. In addition, by analyzing the performance and the observability of the time synchronization error according to the maneuver, it was confirmed that the time-variant maneuver such as rotational motion is necessary to estimate the time synchronization error adequately. In order to reduce the influence of the time synchronization error on the SAR image, the time synchronization error must be compensated by performing maneuver changing over time such as a rotation before SAR operation.