• Title/Summary/Keyword: SAR Images

Search Result 433, Processing Time 0.022 seconds

Some Applications of SAR Imagery to the Coastal Waters of Korea (한국 주변 해역에서의 SAR 영상 응용예)

  • 김태림
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • Several physical phenomena on the sea surface are analyzed from SAR images of South Sea areas, Korea. Strong wave patterns propagating in southerly direction are seen in ERS-1 SAR image on October 11, 1994, and a wave directional spectrum is calculated from this image using the SAR modulation transfer function. RADARSAT SAR image of August 15, 1996 reveals internal waves in northern coastal waters of Cheju Island. Analysis indicates that the internal waves may have been generated by the tidal currents traveling over the shallow bottom of the stratified water in the summer during the tidal changeovers fro ebb to flood and shows patterns of trains of solitons. RADARSAT SAR image taken 3 days after the oil spill accident near Goeje Isalnd on April 3, 1997 detects distinct oil slicks from the accident area but also shows slicks near the coast caused by wind sheltering of coastal mountains and chemical-biological activities.

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

Implementation of Image Improvement using MAD Order Statistics for SAR Image in Wavelet Transform Domain (웨이블렛 변환 영역에서 MAD 순서통계량을 이용한 SAR 영상의 화질개선 구현)

  • Lee, Cheol;Lee, Jung-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1381-1388
    • /
    • 2014
  • This paper is proposed a wavelet-based the order statistics MAD(Median Absolute Deviation) method of SAR(Synthetic Aperture Radar) image for image enhancement. also The method of compared and defined the threshold the wavelet coefficients using MAD of the wavelet coefficients of the detail subbands was proposed to effectively image enhancement. In order to complement the disadvantage, the threshold of the proposed method sets up the image statistic and excludes the distortion. The hardware design is used FPGA of Xilinx and DSP system for the image enhancement and compressed encoding of the proposed algorithm. Therefore the proposed method is totally verified by comparing with the several other images.

Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset (합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석)

  • Ji-Hoon Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

Velocity Estimation of Moving Targets by Azimuth Differentials of SAR Images (SAR 영상의 Azimuth 차분을 이용한 움직이는 물체의 속도측정방법)

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well blown phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We propose a method for estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on a phenomenon that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and then the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved from the constant phase difference. This technique was tested using an ENVISAT ASAR image in which several unknown ships are presented. In the case of a isolated target, the result was nearly coincident with the result from conventional method. However, in the case of a target which is located near non-target material, the difference of the result between from our algorithm and from conventional method was more than 1m/s.

Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery (고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가)

  • Kang, Ah-Reum;Byun, Young-Gi;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2015
  • Very high resolution (VHR) satellite imagery provide valuable information on urban change monitoring due to multi-temporal observation over large areas. Recently, there has been increased interest in the urban change detection technique using VHR Synthetic Aperture Radar (SAR) imaging system, because it can take images regardless of solar illumination and weather condition. In this paper, we proposed a texture-based urban change detection method using the VHR SAR texture features generated from Gray-Level Co-Occurrence Matrix (GLCM). In order to evaluate the efficiency of the proposed method, the result was compared, visually and quantitatively, with the result of Non-Coherent Change Detection (NCCD) which is widely used for the change detection of VHR SAR image. The experimental results showed the greater detection accuracy and the visually satisfactory result compared with the NCCD method. In conclusion, the proposed method has shown a great potential for the extraction of urban change information from VHR SAR imagery.

A Development of Reflector for CAL/VAL of SAR Satellite (SAR 위성 검보정을 위한 반사기 개발)

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2009
  • The payload can be classified as a passive and active type. Generally radar satellite to acquire specific information through various radar images will use the SAR (Synthetic Aperture Radar) as active type payload. the principal of SAR satellite is to receive the signal returned from certain objects and/or surfaces in order to construct an radar image. The data acquired from the satellite in its real orbit shall be needed to perform successful CAL/VAL (Calibration & Validation) because the SAR satellite have to receive the returned signal for SAR image construction. In order to do the above, the returned signal shall be related to ground targets. Especially ground target is the corner reflector (CR) for CAL/VAL. Generally the reflector has various types and shapes. Their selection can be dependent on characteristics and mission objectives of SAR satellite. In this paper, reflector focused on the optimal case and effective case has been studied and then the trihedral corner reflector under this study has been designed and its performance also analyzed.

Extraction of SAR Imagery Informations for the Classification Accuracy Enhancement - Using SPOT XS and RADARSAT SAR Imagery (광학영상의 토지피복분류 정확도 향상을 위한 SAR 영상 정보의 처리에 관한 연구)

  • Seo, Byoung-Jun;Park, Min-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.121-130
    • /
    • 2000
  • For the land-cover classification we have usually used imagery of the optical sensors only. But currently a number of the satellite with various sensors are operating and the availability of using the data acquired from them are increasing. SAR sensors, in particular, can produce additional informations on the land-cover which has not been available from optical sensors. On this study, I have applied the SAR Image to the SPOT XS image in the classification procedures, and analysed the classified results. In this procedure I have extracted texture informations from SAR intensity images, then applied both intensity and texture informations. From the accuracy analysis, overall accuracy are increased slightly when the SAR texture was applied. In case of the Built-up class the results showed higher accuracy than those of when only the SPOT XS image was used. From this result I can show that overall accuracy was increased slightly but the spatial distribution of classes was visibly improved.

  • PDF

Extraction of Ground Control Points from TerraSAR-X Data (TerraSAR-X를 이용한 지상기준점 추출)

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) from SAR data itself without published maps. TerraSAR-X data that are one of highest spatial resolution among civilian SAR systems is now available. In this study, a sophisticated method for GCP extraction from TerraSAR-X data was tested and the quality of the extracted GCPs was evaluated. Mean values of the distance errors were 0.11m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from any civilian remote sensing systems. The extracted GCPs were used for geo-rectification of IKONOS image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

Analysis of Image Integration Methods for Applying of Multiresolution Satellite Images (다중 위성영상 활용을 위한 영상 통합 기법 분석)

  • Lee Jee Kee;Han Dong Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.359-365
    • /
    • 2004
  • Data integration techniques are becoming increasing1y important for conquering a limitation with a single data. Image fusion which improves the spatial and spectral resolution from a set of images with difffrent spatial and spectral resolutions, and image registration which matches two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged have been researched. In this paper, we compared with six image fusion methods(Brovey, IHS, PCA, HPF, CN, and MWD) with panchromatic and multispectral images of IKONOS and developed the registration method for applying to SPOT-5 satellite image and RADARSAT SAR satellite image. As the result of tests on image fusion and image registration, we could find that MWD and HPF methods showed the good result in term of visual comparison analysis and statistical analysis. And we could extract patches which depict detailed topographic information from SPOT-5 and RADARSAT and obtain encouraging results in image registration.