• Title/Summary/Keyword: SAR Images

Search Result 433, Processing Time 0.031 seconds

Digital Elevation Map Generation using SAR Stereo Technique with Radarsat Images over Seoul Area

  • Ka, Min-Ho;Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.155-164
    • /
    • 2001
  • In this study, we describe the technique for deriving a digital elevation model (DEM) from a synthetic aperture radar (SAR) stereo image pair and apply it to an image pair over "Kwanak-san" in Seoul, Korea. This paper contains brief discussion of the use of stereo SAR to derive topographic data, description of the overall structure of the stereo SAR processing system, description of the site and SAR data used for the evaluation and the source of validation data, results of the stereo SAR processing, analysis and evaluation of their accuracy against map data, and finally summarizes the main highlights of the method used, comments and recommendations on its future implementation.

Quantitative Analysis of the Look Direction Bias in SAR Image for Geological Lineament Study (지질학적 선구조 분석을 위한 SAR 영상에서의 방향편차에 대한 정량적 분석)

  • 홍창기;원중선;민경덕
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • SAR imagery usually reveals the influence of antenna look-direction on the delineation of geological structures. In this study, the look-direction bias in SAR image is quantitatively analyzed specifically for geological lineament study. Geologic lineaments are estimated using both Landsat TM and JERS-1 SAR images over the study area to quantitatively compare and analyze the look-direction bias in the SAR image. The standard geologic lineaments in the study area are established from lineaments estimated from TM images, field mapping, and fault lines in a published geologic map. The results show that lineaments normal to radar look-direction are extremely well enhanced while those parallel to look-direction are less visible as expected. However, certain lineaments even parallel to radar look-direction can still be detectable in a favorable topographic condition. Compared with TM image, the total number of detected lineaments in each direction in the SAR image increases or decreases ranging from 33% to 159% in length and from 28% to 187% in occurrence. The ratio of lineaments in SAR image to those in TM image with respect to direction can be fitted by a cosine function. The fitted function indicates that geological lineament is more easily detected in SAR image than in TM image within about $\pm$50$^{\circ}$ normal to radar look-direction. And lineaments with limited extension appear to be more sensitive to the look direction bias effect.

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.

MONITORING OF BAR TRANSFORMATION IN THE HAN RIVER ESTUARY USING RADARSAT/SAR IMAGES

  • Yang, Chan-Su;Han, Hee-Jeong;Park, Jin-Kyu;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.856-859
    • /
    • 2006
  • In river with bar, the characteristics of its physical conditions have a close relationship with bar morphology. In this paper, a monitoring approach of bar transformation in the Han River Estuary is presented using RADARSAT/SAR Images. The estuary is divided into North and South Korea and its area is blocked by CCL(Civil Control Line). Satellite remote sensing, therefore, is uniquely suited to monitoring bar transformation. Based on SAR signatures for bars, bar transformation is investigated from 2000 to 2005, and monitoring of suspended-silt transportations from terrestrial runoff is tried to understand the morphology during the events of severe rain storm. SAR data did not reveal clearly the bar locations because of most of data acquisitions during high tides from 6.8 m to 9.0 m. Even though the problem, it could be said that in the estuary vegetated area and natural levees are developed well, but bars and shifted after an event like a flood. It is also showed that suspended solids such as silt transported through the estuary could contribute highly to a sedimentation environment around Incheon.

  • PDF

NEW CLASSIFICATION TECHNIQUES FOR POLARIMETRIC SAR IMAGES AND ASSOCIATED THREE-COMPONENT DECOMPOSITION TECHNIQUE

  • Oh, Yi-Sok;Chang, Geba;Lee, Kyung-Yup
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • In this paper, we propose one unsupervised classification technique using the degree of polarization (DoP) and the co-polarized phase-difference (CPD) statistics, instead of the entropy and alpha. It is shown that the DoP is closely related to the entropy, and the CPD to the alpha. The DoP explains the feature how much the effect of multiple reflections is contained. Hence, the DoP could be used as an important factor for classifying classes. The CPD can also be computed from the measured Mueller matrix elements. For the smooth surface scattering, the CPD is about $0^{\circ}$, and for dihedral-type scattering, the CPD is about $180^{\circ}$. A DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification results are compared with the existing Entropy-alpha diagram as well as the IPL-AirSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest. Based on the DoP and CPD analysis, a simple three-component decomposition technique was also proposed.

  • PDF

A Study on Road Detection Based on MRF in SAR Image (SAR 영상에서 MRF 기반 도로 검출에 관한 연구)

  • 김순백;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2001
  • In this paper, an estimation method of hybrid feature was proposed to detect linear feature such as the road network from SAR(synthetics aperture radar) images that include speckle noise. First we considered the mean intensity ratio or the statistical properties of locality neighboring regions to detect linear feature of road. The responses of both methods are combined to detect the entire road network. The purpose of this paper is to extract the segments of road and to mutually connect them according to the identical intensity road from the locally detected fusing images. The algorithm proposed in this paper is to define MRF(markov random field) model of the priori knowledge on the roads and applied it to energy function of interacting density points, and to detect the road networks by optimizing the energy function.

  • PDF

VELOCITY ESTIMATION OF MOVING TARGETS BY AZIMUTH DIFFERENTIALS OF SAR IMAGES;PRELIMINARY RESULTS

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.625-628
    • /
    • 2007
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well known phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We adopted a method estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on an assumption that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved. This technique is tested using an ENVISAT ASAR image in which several unknown ships are presented. The theoretical accuracy of this technique is discussed by SAR simulation. The advantages and disadvantages of this method over the conventional method are also discussed.

  • PDF

New Simple Decomposition Technique for Polarimetric SAR Images (완전편파 SAR영상의 새로운 영상 분해 기법)

  • Lee, Kyung-Yup;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a new decomposition technique for polarimetric synthetic aperture radar (SAR) images. This new decomposition technique is based on the degree of polarization (DoP) and co-polarized phase-difference (CPD) of the measured polarimetric backscattering coefficients. This decomposition technique is compared with the existing three- and four-component decomposition techniques with the ALOS PALSAR full polarimetric L-band data acquired in 2009. It is shown that the new decomposition technique is better or comparable to the existing techniques for the study areas such as sea, bare soil, forest, and urban area.

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.