• Title/Summary/Keyword: SAR Image

Search Result 441, Processing Time 0.034 seconds

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

Millimeter-Wave(W-Band) Forward-Looking Super-Resolution Radar Imaging via Reweighted ℓ1-Minimization (재가중치 ℓ1-최소화를 통한 밀리미터파(W밴드) 전방 관측 초해상도 레이다 영상 기법)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.636-645
    • /
    • 2017
  • A scanning radar is exploited widely such as for ground surveillance, disaster rescue, and etc. However, the range resolution is limited by transmitted bandwidth and cross-range resolution is limited by beam width. In this paper, we propose a method for super-resolution radar imaging. If the distribution of reflectivity is sparse, the distribution is called sparse signal. That is, the problem could be formulated as compressive sensing problem. In this paper, 2D super-resolution radar image is generated via reweighted ${\ell}_1-Minimization$. In the simulation results, we compared the images obtained by the proposed method with those of the conventional Orthogonal Matching Pursuit(OMP) and Synthetic Aperture Radar(SAR).

RFM for High Resolution Satellite Sensor Modeling (RFM을 이용한 고해상도 인공위성 센서모델링)

  • 조우석;이동구
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.337-344
    • /
    • 2002
  • In general, in order to obtain position information from satellite images, satellite sensor model which represents the geometric relationship between sensor and targeted area should be established in the first place. However, it is not simple for modelling pushbroom satellite sensor due to the image capturing process. In recent development of new generation imaging sensors, a generic sensor model, which is applicable to all types of sensors such as frame, pushbroom, whiskbroom, and SAR is in great need to the remote sensing and photogrammetry community. In this paper, the RFM as sensor model was implemented with KOMPSAT EOC and SPOT satellite images and analyzed in cases where the number and distribution of ground control points were varied. The test results of RFM were presented and compared with those of Direct Linear Transformation(DLT).

KOMPSAT Imagery Application Status (다목적실용위성 영상자료 활용 현황)

  • Lee, Kwangjae;Kim, Younsoo;Chae, Taebyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1311-1317
    • /
    • 2018
  • The ultimate goal of satellite development is to use information obtained from satellites. Therefore, national-levelsatellite development program should include not only hardware development, but also infrastructure establishment and application technology development for information utilization. Until now, Korea has developed various satellites and has been very useful in weather and maritime surveillance as well as various disasters. In particular, KOMPSAT (Korea Multi-purpose Satellite) images have been used extensively in agriculture, forestry and marine fields based on high spatial resolution, and has been widely used in research related to precision mapping and change detection. This special issue aims to introduce a variety of recent studies conducted using KOMPSAT optical and SAR (Synthetic Aperture Radar) images and to disseminate related satellite image application technologies to the public sector.

A Study on the Method of Generating RPC for KOMPSAT-2 MSC Pre-Processing System (KOMPSAT-2 MSC 전처리시스템을 위한 RPC(Rational Polynomial Coefficient)생성 기법에 관한 연구)

  • 서두천;임효숙
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.417-422
    • /
    • 2003
  • The KOMPSAT-2 MSC(Multi-Spectral Camera), with high spatial resolution, is currently under development and will be launched in the end of 2004. A sensor model relates a 3-D ground position to the corresponding 2-D image position and describes the imaging geometry that is necessary to reconstruct the physical imaging process. The Rational Function Model (RFM) has been considered as a generic sensor model. form. The RFM is technically applicable to all types of sensors such as frame, pushbroom, whiskbroom and SAR etc. With the increasing availability of the new generation imaging sensors, accurate and fast rectification of digital imagery using a generic sensor model becomes of great interest to the user community. This paper describes the procedure to generation of the RPC (Rational Polynomial Coefficients) for KOMPSAT-2 MSC.

  • PDF

Issues in Control of a Robotic Spatial Augmented Reality System (로보틱 공간증강현실 시스템의 제어의 문제)

  • Lee, Joo-Haeng;Kim, Hyun;Suh, Young-Ho;Kim, Hyung-Sun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.437-448
    • /
    • 2011
  • A robotic spatial augmented reality (RSAR) system combines a robotics technology with a spatial augmented reality system (SAR) where cameras are used to recognize real objects and projectors augment information and user interface directly on the surface of the recognized objects, rather than relying on handheld display devices. Moreover, a robotic module is actively used to discover and utilize the context of users and environments. The control of a RSAR system involves several issues from different technical fields such as classical inverse kinematics of motors where projector-camera pairs are mounted, inverse projection problems to find appropriate internal/external parameters of projectors and cameras, and image warping in graphics pipeline to compensate the kinematic constraints. In this paper, we investigate various control issues related to a RSAR system and propose basic approaches to handle them, specially focused on the prototype RSAR system developed in ETRI.

Detection of Road Features Using MAP Estimation Algorithm In Radar Images (MAP 추정 알고리즘에 의한 레이더 영상에서 도로검출)

  • 김순백;이수흠;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.62-65
    • /
    • 2003
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing information from these detectors. The second is global step, we identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

Detection of Road Features Using MRF in Radar Images (MRF를 이용한 레이더 영상에서 도로검출)

  • 김순백;정래형;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.221-224
    • /
    • 2000
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing information from these detectors. The second is global step, we identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

Estimation of water level over Hwanggang Dam using satellite image (위성영상을 활용한 북한 황강댐 수위 추정)

  • Choi, Sunghwa;Lee, Jaehee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.385-388
    • /
    • 2018
  • 군남댐의 운영은 북한지역에 위치한 저수지와 하천 상황, 특히 황강댐 방류에 절대적으로 의존하는 특성이 있음에도 불구하고, 수위 상황 등 자료수집의 한계로 군남댐 운영에 어려움이 많다. 이러한 상황에서 위성원격탐사 영상자료는 미계측 북한 접경지역의 수문상황을 판단하는 데 유용한 자료가 될 수 있다. 위성을 통한 수위 추정 방법은 위성영상에서 탐지된 수표면을 DEM과 중첩하여 판독하는 방법인 imaging 기법과 레이더고도계로 불리는 altimeter로 위성에서 수표면까지의 거리를 직접 측정하여 산출하는 profiling 기법 등 크게 두 가지 방법이 있다. 본 연구에서는 위성영상으로 산출된 DEM과 ESA의 Sentinel-1 C-밴드 SAR 영상을 중첩하여 황강댐 수위를 추정해 보았다. 정확도 문제가 있겠지만, 황강댐 수위 변화의 경향성은 확인할 수 있었으므로, 향후 개선을 통해 황강댐 수위변동 추세 분석과 상황별 적절한 사전 대응에 활용할 수 있을 것으로 판단된다.

  • PDF