• Title/Summary/Keyword: SAR위성영상

Search Result 20, Processing Time 0.026 seconds

Analysis of KOMPSAT-5 Orbit for Radargrammetry at Different Latitudes (Radargrammetry 적용을 위한 위도에 따른 KOMPSAT-5 궤도 분석)

  • Jang, So-Young;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.63-66
    • /
    • 2008
  • 2010년 5월에 발사 예정인 KOMPSAT-5(KOrea Multi-Purpose SATellite-5)는 KOMPSAT-1, 2호에 탑재된 광학센서와는 달리 기상상태와 태양고도에 제약을 받지 않고 자료 획득이 가능한 SAR 시스템이 탑재된다. 본 연구에서는 KOMPSAT-5의 SAR 시스템으로부터 radargrammetry 기법을 적용하기 위해 위성의 궤도와 영상 모드를 분석하였다. Radargrammetry 적용을 위한 SAR 영상 pair의 parallax의 height sensitivity를 이론상으로 계산하였다. 그리고 STK 소프트웨어를 사용하여 대전과 남극 세종기지에서의 최적 조건을 각각 예시하였다. 입사각이 20$^{\cric}$-45$^{\cric}$가 되는 nominal mode의 descending pass만을 사용하여 height sensitivity가 0.5-0.75 사이의 영상 조합을 찾았다. 그 결과 Pass Number 쌍으로서, 대전은 5-4, 7-5, 8-5의 영상 조합을 하였을 때 radargrammetry 적용이 용이하고, 남극 세종기지는 8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10, 15-11의 영상 조합을 하였을 때 radargrammetry 적용이 가능한 것으로 예측되었다.

  • PDF

Design and Development of TRM for NEXTSat-2 X-band Synthetic Aperture Radar (차세대소형위성2호 X대역 합성 개구 레이더용 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Dong Guk Kim;Ilyoung Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.193-200
    • /
    • 2024
  • This paper describes the design and development of a transmit receiver module(TRM) for mounting on X-band SAR of the NEXTSat-2. The TRM generates the chirp signal with required bandwidth through the DDS in X-band and performs frequency conversion, combination for the signal to transmit and be received and frequency synthesis. Tx path of the TRM produces signals of total 28 bandwidths up to 96.8 MHz and has output signal level of more than + 9.37 dBm. Rx path of the TRM has minimum noise figure of 15.7 dB. The measurement results show that required requirements are satisfied. The TRM is installed on the NEXTSat-2 flight model(FM), launched by KSLV-II(Nuri) on May 23, 2023 and currently operational.

A Study on Spotlight SAR Image Formation by using Motion Measurement Results of CDGPS (CDGPS의 요동 측정 결과를 이용한 Spotlight SAR 영상 형성에 관한 연구)

  • Hwang, Jeonghun;Ko, Young-Chang;Kim, So-Yeon;Kwon, Kyoung-Il;Yoon, Sang-Ho;Kim, Hyung-Suk;Shin, Hyun-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • To develop and evaluate the real-time SAR(Synthetic Aperture Radar) motion measurement system, true antenna phase center(APC) positions during SAT(Synthetic Aperture Time) are needed. In this paper, CDGPS(Carrier phase Differential Global Positioning System) post processing method is proposed to get the true APC position for spotlight SAR image formation. The CDGPS position is smoothed to remove high frequency noise which exists inherently in the carrier phase measurement. This paper shows smoothed CDGPS data is enough to provide the true APC for high-quality SAR image formation through motion measurement result, phase error estimation and IRF(Impulse Response Function) analysis.

Satellite Building Segmentation using Deformable Convolution and Knowledge Distillation (변형 가능한 컨볼루션 네트워크와 지식증류 기반 위성 영상 빌딩 분할)

  • Choi, Keunhoon;Lee, Eungbean;Choi, Byungin;Lee, Tae-Young;Ahn, JongSik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.895-902
    • /
    • 2022
  • Building segmentation using satellite imagery such as EO (Electro-Optical) and SAR (Synthetic-Aperture Radar) images are widely used due to their various uses. EO images have the advantage of having color information, and they are noise-free. In contrast, SAR images can identify the physical characteristics and geometrical information that the EO image cannot capture. This paper proposes a learning framework for efficient building segmentation that consists of a teacher-student-based privileged knowledge distillation and deformable convolution block. The teacher network utilizes EO and SAR images simultaneously to produce richer features and provide them to the student network, while the student network only uses EO images. To do this, we present objective functions that consist of Kullback-Leibler divergence loss and knowledge distillation loss. Furthermore, we introduce deformable convolution to avoid pixel-level noise and efficiently capture hard samples such as small and thin buildings at the global level. Experimental result shows that our method outperforms other methods and efficiently captures complex samples such as a small or narrow building. Moreover, Since our method can be applied to various methods.

Observation of Ridge-Runnel and Ripples in Mongsanpo Intertidal Flat by Satellite SAR Imagery (인공위성 SAR 영상을 이용한 몽산포 조간대의 Ridge-Runnel 및 연흔 관찰)

  • Jang, So-Yeong;Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, we analyzed ridge-runnel structure and ripple marks by using Envisat ASAR, JERS-1 SAR images and in-situ data in Mongsanpo intertidal flat located in Taean-Gun, Korea. A group of light-and-dark lines parallel to the shoreline, alternating 3-5 times, were observed in the intertidal flat in Envisat ASAR images. The patterns are related to ridge-runnel structure in the intertidal flat exposed to air. Well-drained runnels, typically with ripple marks, showed strong backscattering while runnels submerged by surface water or ridges, typically smooth with no ripple, have weak backscattering coefficients in Envisat ASAR images. In JERS-1 SAR images, however, the backscattering was very low on the entire intertidal flat and no ridge-runnel structure could be observed. The wavelengths of ripple marks measured from in-situ observations have ranges from 4 to 10 cm that satisfies the Bragg scattering condition of the 1st-order in Envisat ASAR images operating in C-band, but not in JERS-1 SAR that used L-band. Through this study using SAR images, we could successfully analyze the sedimentary conditions of intertidal flats with ridge-runnel and ripple marks which are not easily observed by optical sensors. It is expected that the results of this study with SAR images will contribute to the sedimentary research over intertidal flats.

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

Analysis of KOMPSAT-5 Orbit for Radargrammetry (레이더 측량기법 적용을 위한 다목적실용위성 5호 궤도 분석)

  • Lee, Hoon-Yol;Jang, So-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • KOMPSAT-5 will be launched in 2010 carrying a SAR (Synthetic Aperture Radar) system to obtain high resolution images of the earth surface regardless of weather or solar condition. In this paper, the orbits of KOMPSAT-5 and the imaging modes of SAR were analyzed for radargrammetry, and the best image pairs were suggested. We set the pass number from the nearest orbit to a given ground point and selected image pairs for radargrarnmetry, with height sensitivity of parallax higher than 0.5 to achieve enough height resolution and with the value lower than 0.8 to avoid errors from geometric distortion. On the equator, for example, where the distance between two adjacent passes is fixed to 95 km, we solved the orbit geometry and found that the image pairs with the pass numbers of 3-2 and 5-3 are suitable for radargrarnmetry. As the examples with arbitrary latitude, we selected Daejeon and Sejong Antarctic stations and calculated the orbital elements by using STK software. Three image pairs (5-4, 7-5 and 8-5) were found suitable for radargrammetry at Daejeon while 10 pairs (8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10 and 15-11) at Sejong Antarctic station.

Monitoring Wheat Growth by COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong;Lee, Hoonyol;Oh, Yisok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.