• Title/Summary/Keyword: SAPO-5

Search Result 16, Processing Time 0.022 seconds

Selective Crystallization of SAPO-5 and SAPO-34 Molecular Sieves in Alkaline Condition: Effect of Heating Method

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Kim, Young-Ho;Park, Sang-Eon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.558-562
    • /
    • 2005
  • Crystallization of SAPO-5 and SAPO-34 molecular sieves with microwave and conventional electric heating of the same gel has been investigated in an alkaline condition using N,N,N’N’tetraethylethylenediamine as a template molecule. SAPO-5 structure can be selectively prepared with microwave heating because of the fast crystallization of the technique. On the other hand, SAPO-34 is the sole product with usual conventional electric heating because SAPO-5 can be gradually transformed into SAPO-34 structure with an increase in crystallization time. This phase selectivity is probably because of the relative stability of the two phases at the reaction conditions (kinetic effect). Crystallization with microwave heating can be suggested as a phase selective synthesis method for relatively unstable materials because of fast crystallization.

Synthesis and Their Catalytic Performance on Microporous Materials(CHA, ERI and MTT types) (마이크로다공성재료의 합성과 촉매적성능 (CHA, ERI, and MTT types))

  • Kang, Mi-Sook;Park, Jong-Yul;Um, Myeong-Heon
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 1999
  • This work was focused on the synthesis and their catalytic performance on microporous materials having various pore types and dimensions in structures, such as the SAPO-34 and the SAPO-44 with CHA type, the SAPO-17 with ERI type of three dimensional structures, and the ZSM-23 with MTT type of one dimensional structure. Synthesized materials exhibited various acidities and the selectivities to olefin in methanol conversion. As a result, the order of their acid strength was as follows; SAPO-44>SAPO-34>SAPO-17>ZSM-5. On the other hand, the CHA type materials, such as SAPO-34 and SAPO-44, had high selectivity to light olefins(ethylene or propylene), and ZSM-23 with MTT typ of one dimensional structure showed high selectivity to paraffins over $\textrm{C}_{5}$~. This result is a proof that the structure in material had strong influence on catalytic performance. In addition, a surprising result is that the catalytic selectivity to ethylene enhanced on Ni-corporated materials compared with the non-corporated.

  • PDF

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template (탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응)

  • Kang, Eun-Jee;Lee, Dong-Hee;Kim, Hyo-Sub;Choi, Ki-Hwan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

A Facile Synthesis of SAPO-34 Molecular Sieves with Microwave Irradiation in Wide Reaction Conditions

  • Jun, Jong-Won;Lee, Ji-Sun;Seok, Hwi-Young;Chang, Jong-San;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1957-1964
    • /
    • 2011
  • Various reaction conditions uding temperature, time and type and concentration of templates have been changed in order to facilely synthesize, especially with microwave (MW) heating, SAPO-34 molecular sieves. SAPO-34 molecular sieve can be synthesized rapidly with microwave irradiation from a gel containing tetraethylammonium hydroxide (TEAOH) as a template. However, other several templating molecules lead to SAPO-5 molecular sieve under microwave irradiation even though SAPO-34 is obtained by conventional electric synthesis from the same reactant gels. Moreover, SAPO-34 can be obtained more easily by increasing the TEAOH or silica concentration or by increasing the reaction temperature. SAPO-34 can be obtained within 5 min in a selected condition (high temperature of 210 $^{\circ}C$) with microwave heating, which may lead to a continuous production of the important material. SAPO-34 synthesized by microwave irradiation is homogeneous and small in size and shows acidity and a stable performance in the dehydration of methanol and 2-butanol to olefins, suggesting potential applications in acid catalysis.

The Study on Location and Adsorbate Interaction for Vanadium Species in $VO^{2+}-SAPO-5$ by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies

  • Back Gern-Ho;Park Sung-Gun;Lee Chul-Wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.138-154
    • /
    • 2005
  • Vanadium-incorporated aluminophosphate molecular sieve $VO^{2+}-SAPO-5$ was studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium structure and interaction with various adsorbate molecules. It was found that the main species at low concentration of vanadium is a monomeric vanadium units in square pyramidal or distorted octahedral coordination, both in oxidation state (IV) for the calcined hydrated material and in oxidation state (V) for the calcined material. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. It is suggested as a $VO(H_2O)_3^{2+}$ complex coordinated to two framework oxygen bonded aluminum. When calcined, hydrated $VO^{2+}-}SAPO-5$ is dehydrated at elevated temperature, a species loses its water ligands and transforms to $VO^{2+}$ ions coordinated to two framework oxygens (species B). Species B reduces its intensity, significantly after treatment with $O_2\;at\;600^{\circ}C$ for 5 h, thus suggesting oxidation of $V^{4+}\;to\;V^{5+}$. When dehydrated $VO^{2+}-SAPO-5$ contacts with $D_2O$ at room temperature, the EPR signal of species A is observed. Thus species assumed as a $VO^{2+}(O_f)_2(D_2O)_3$, by considering two framework oxygens. Adsorption of deuterated ethanol, propanol on dehydrated $VO^{2+}_{-}SAPO-5$ result in another new vanadium species E and F, respectively, which are identified as a $VO^{2+}-(CH_3CH_2OD)_3,\;VO^{2+}-(CH_3CH_2CH_2OD)_2$ complex. When deuterated benzene is adsorbed on dehydrated $VO^{2+}-SAPO-5$, another new vanadium species G, identified as a $VO^{2+}-(C_6D_6)$ is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

The V(IV) Species, Locaton and Adsorbate Interaction in VH-SAPO-11 studied by ESR and ESEM

  • Back, Gernh-ho;Back, Seung-Chan;Park, Sung-Gun;Lee, Chul-wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • Vanadium-incorporated aluminophophate molecular sieve VH-SAPO-11 has been studied by electron spin resonanace (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium locatin and interaction with various adsorbate molecules. As-synthsized VH-SAPO-11 contains only vanady1 species with distored octahral coordination. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is suggested as a VO$(H_2O)_2^{2+$} complex coordinate to three framwork oxygen bonded to aluminum. When calcined, hydrate VH-SAPO-11 is dehydrated at elevated temperature, species A loses it water ligands and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$at high temperature, thus suggesting oxidation of $v^{4+}$to $v^{5+}$. When dehydrated VH-SAPO-11 contacts with $D_2O$ at room temperature, the ESR signal of species A is observed. This species assumed as a $VO(O_f)_3(D_2O)_2$, by considering 3 framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-11 results in another new vanadium species D, which is identified as a $VO(CD_{3}OH)$ complex. When deuterated ethanol is adsorbed on dehydrated VH-SAPO-11, another new vanadium species E identified as a $VO(C_{2}H_{5}OD)^{2+}$, is observed. When deuterated propanol is adsorbed on dehydrated VH-SAPO-11, a new vanadium species F identified as a $VO(C_{3}H_{7}OD)$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

The Effect of Crystal Size of SAPO-34 Synthesized Using Various Structure Directing Agents for MTO Reaction (다양한 구조 유도제로써 합성된 SAPO-34의 결정크기가 메탄올로부터 올레핀 전환반응(MTO)에 미치는 영향)

  • Song, Young-Ha;Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Shin, Chae-Ho;Jeong, Soon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.559-567
    • /
    • 2008
  • SAPO-34 is a well-known catalyst for methanol to olefins (MTO) process, but is rapidly deactivated by coke formation. It is necessary to improve the catalyst lifetime of SAPO-34 for MTO process. In the present work, SAPO-34 catalysts were synthesized with a variety of structure directing agent, and the physicochemical properties of the catalysts were examined by $N_2$-isotherm, XRD, SEM, and $NH_3$-TPD. It was found that mixed structure directing agents, especially DEA and TEAOH, gave well developed SAPO-34 crystal structure and reduced the crystal size and moderated acidity of SAPO-34 under the same synthetic conditions as that of various structure directing agents. Also, we could find that SAPO-34 catalyst prepared by mixed templates of DEA and TEAOH had the superior catalytic activity and the longer lifetime in MTO reaction.

Location and Adsorbate Interactions of V(IV) Species in VH-SAPO-34 Studied by EPR and Electron Spin-Echo Modulation Spectroscopies

  • Gernho Back;Cho, Young-Soo;Lee, Yong-Ill;Kim, Yanghee;Larry Kevan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.73-90
    • /
    • 2001
  • Vanadium-doped H-SAPO-34 samples were prepared by a high-temperature solid-state reaction between SAPO-34 and the paramagnetic V(Ⅳ) species and characterized carefully by EPR and Electron Spin-Echo Modulation(ESEM) studies. The paramagnetic vanadium species generated in both V$_2$O$\_$5/ and VOSO$\_$4/ of SAPO-34 have the same narrow range of g value fur vanadium species assigned to VO$\^$2+/ inferred from the isotropic EPR spectrum at 293 K. The EPR and ESEM data indicate that the V(Ⅳ) species exist as a vanadyl ion either as [V(Ⅳ)]O$\^$2+/ or V$\^$4+/. The [V(Ⅳ)]O$\^$2+/ species seems to be more probable because SAPO-34 having a low negative framework charged and more positively charged species like V$\^$4+/can not be easily stabilized. Tetravalent vanadium ion in vadium-doped H- SAPO-34 can only be observed at the temperature lower than 77 K, while the vanadyl ion, VO$\^$2+/in the activated sample of VH-SAPO-34 can produce the ion even at room temperature. After the adsorption of methanol, ethanol, propanol or ethene to the VH-SAPO-34, only one molecule coordinate to [V(Ⅳ)]O$\^$2+/ was observed in EPR and ESEM spectra.

  • PDF

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song;Jeong Hyeon Lim;Young Chan Yoon;Chu Sik Park;Young Ho Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.548-555
    • /
    • 2023
  • SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).