• Title/Summary/Keyword: SAP 2000

Search Result 175, Processing Time 0.023 seconds

Experiment and simulation analysis on full scale double-layer concrete shell

  • Thanh Quang Khai Lam;Thi My Dung Do
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The published studies usually used analytical method, numerical methods or experimental method to determine the stress-strain state and displacement of the single-layer or multi-layer curved shell types, but with a small scale model. However, a full scale multi-layer doubly curved concrete shell roof model should be researched. This paper presents the results of the experiment and simulation analysis involving stress-strain state, sliding between layers, the formation and development of the full scale double-layer doubly curved concrete shell roof when this shell begins to crack. The results of the this study have constructed the load-sliding strain relationship; strain diagram; stress diagram in the shell layers; the Nx, Ny membrane force diagram and deflection of shell. Thisresults by experimental method on a full scale model of concrete have clarified the working of multi-layer doubly curved concrete shell roof. The experimental and simulation results are compared with each other and compared with the Sap2000 software.

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A.;Boudaoud, Zeineddine
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

Structural Safely Analysis of a Modified 1-2W Type Greenhouse Enhanced for Culturing Paprika (착색단고추 재배용 1-2W형 개조온실 구조의 안정성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Bae, Yong-Han;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • This study was performed to check the structural safety of modified 1-2W Greenhouses to be utilized fur growing Paprika. This type of greenhouse was derived from being remodeled by enhancing the column height of conventional 1-2W type greenhouses. According to the results of structural analysis performed by SAP-2000, there was not significant change in critical snow depth in spite of increasing the column height of 1.2 m by welding. But the critical wind velocities were shown to be $26.0\sim4l.0m/s$, which were $3\sim18%$ lower wind velocities compared with those critical velocities estimated for typical type of 1-2W greenhouse. Under the wind loads, those maximum section forces such as shear force, axial force, and bending moment, together with the deformed frame shape of strained greenhouse, were almost similar in both typical type and modified type. Maximum bending moment of column was found at eave's height of column on windward side. Under the snow loads, those maximum section forces such as shear farce, axial force, and bending moment, together with the deformed frame shape of strained greenhouse, were almost similar in both typical type and modified type. Maximum section forces except axial force was found at eave's height of column. Maximum axial force was found at inner column. Soil bearing capacity together with the total foundation resistance against wind upheaval was found to be consistently safe enough to resist to both wind load and snow load.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Stability Analysis of Multi-Functional Fishway with Underground Passage (지하이동통로가 구비된 다기능 어도의 안정성 검토)

  • Lee, Young-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.50-59
    • /
    • 2014
  • In this paper, Reinforced concrete (R/C) and R/C+steel plate concrete slab was carried out by SAP2000 software program in order to compare the stability of the multi-functional fishway, that is Bonggok fishway, built at Bonggok river recently in Gumi city, when the size of underground passage is $1m{\times}0.2m$, $1m{\times}0.4m$, $1m{\times}0.6m$ and the velocity is 0.8m/s, 1.2m/s, 1.6m/s respectively for the S2 (R/C+S/C). The analysis shows the maximum stress of S2 decreases less 26~50% than that of Bonggok, bending moment of sidewall decreases less 28~54%, maximum stress of side wall decreases less 17~31%, bending moment of upper slab decreases less 24~47%, maximum stress of upper slab decreases less 4~20%, and bending moment decreases less 10~27% than that of Bonggok. The complementation is required as much as the following percent; 27% and 25% for the maximum stress and bending moment of underground passage, 15% and 24% for the side wall maximum stress and bending moment, and 10% and 14% for the upper slab maximum stress and bending moment, respectively. This result shows that the S2 is greatly superior to that of the Bonggok fishway, and underground passage size of $1m{\times}0.4m$ is superior to that of $1m{\times}0.2m$ or $1m{\times}0.6m$, and R/C+S/C slab is superior to that of R/C slab. This result is expected to be the basic data for the construction and design of the multi-functional fishway.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Improvement of Lacquer Collection Method by CEPA Application in Lactree(Rhus verniciflua Stokes) (CEPA 처리(處理)에 의한 옻나무 칠액(漆液) 채취법(採取法) 개량(改良)에 관(關)한 연구(硏究))

  • Choi, Tae Bong;Hyun, Jung Oh;Kim, Mahn Jo;Na, Chun Su;Kim, Gab Tae;Lee, Jae Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.208-215
    • /
    • 2000
  • In order to improve 'Salso' method (conventional tapping method) which was very inefficient in the aspects of collection time and labor, this study was carried out to investigate the effect of the application date and the distance from treatment point in the lactree(Rhus verniciflua) treated with 10% CEPA and to decide the possibility of application of the technique in the field. Bark thickness was significantly increased to the part 40cm above and below the treatment point, but urushiol content was increased to the part 20cm above and 10cm below the zone treated with 10% CEPA. The urushiol content of the bark was highest at 5cm above the treated zone and decreased in the order of 10, 20, and 40cm. And the urushiol contents of the bark of the upper part were higher than that of the low part. The effects of CEPA on bark thickness were similar to urushiol contents. Urushiol production of lactree is highly dependent on climatic conditions and particularly on the precipitation, and duration of sunshine. Ten percent of CEPA-lanolin pastes which was treated on June 16 affected bark anatomy and urushiol contents, while the treatment on August 24 did not affect. In the Rhus verniciflua treated with 10% CEPA, the urushiol contents was initially increased from 7 days after treatment, continued for the 4 weeks, and then slight decrease occurred at 5 weeks after the treatment. We measured a total sap yield by Salso method in lactree treated with 10% CEPA. By applying 10% CEPA, the sap yield was increased 3-4 times compared to that of untreated trees in the first tapping. But the relative ratio was gradually decreased from the second tapping to sixth, and after seventh tapping, the untreated trees secreted more sap than the treated trees. We discussed about the causes.

  • PDF

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.