• Title/Summary/Keyword: SA surface implants

Search Result 9, Processing Time 0.025 seconds

The long-term evaluation of the prognosis of implants with acid-etched surfaces sandblasted with alumina: a retrospective clinical study

  • Kim, Min-Joong;Yun, Pil-Young;Chang, Na-Hee;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.10.1-10.9
    • /
    • 2020
  • Background: The aim of this study was to evaluate the long-term clinical stability of implants with acid-etched surfaces sandblasted with alumina using retrospective analyses of the survival rate, success rate, primary and secondary stability, complications, and marginal bone loss of the implants. Methods: Patients who had implants placed (TS III SA, SS II SA, SS III SA, and U III SA) with SA surfaces from Osstem (Osstem Implant Co., Busan, Korea) at the Seoul National University Bundang Hospital, from January 2008 to December 2010 were selected for the study. Patients' medical records and radiographs (panorama, periapical view) were retrospectively analyzed to investigate sex, age, location of implantation, diameter, and length of the implants, initial and secondary stability, presence of bone grafting, types of bone grafting and membranes, early and delayed complications, marginal bone loss, and implant survival rate. Results: Ninety-six implants were placed in 45 patients. Five implants were removed during the follow-up period for a total survival rate of 94.8%. There were 14 cases of complications, including 6 cases of early complications and 8 cases of delayed complications. All five implants that failed to survive were included in the early complications. The survival of implants was significantly associated with the occurrence of complications and the absorption of bone greater than 1 mm within 1 year after prosthetic completion. In addition, the absorption of bone greater than 1 mm within 1 year after prosthetic completion was significantly associated with the occurrence of complications, primary stability, and implant placement method. Five cases that failed to survive were all included in the early complications criteria such as infection, failure of initial osseointegration, and early exposure of the fixture. Conclusions: Of the 96 cases, 5 implants failed resulting in a 94.8% survival rate. The failed implants were all cases of early complications such as infection, failure of initial osseointegration, and early exposure of the fixtures. Periimplantitis was mostly addressed through conservative and/or surgical treatment and resulted in very low prosthetic complications. Therefore, if preventive measures are taken to minimize initial complications, the results can be very stable.

Influence of Implant Surface Coated with pH Buffering Agent on Early Osseointegration

  • Kang, Joo Hyun;Kim, Su-Kyoung;Pae, Hyung Chul;Park, Jin Young;Cha, Jae-Kook;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2018
  • Purpose: Surface treatment with pH buffering agent has been developed to achieve higher and faster osseointegration. The aim of this study was to evaluate its influence by measuring removal torque and analyzing histological characteristics. Materials and Methods: Titanium implants with following surfaces were used in this study: sand-blasted acid-etched (SA) surface (SA group as control I group), SA surface in calcium chloride aqueous solution (CA group as control II group) and SA surface coated with pH buffering agent (pH group as test group). Removal torque test after 2 weeks and bone-to-implant contact and bone area analyses at 2 and 4 weeks were performed. Result: The rotational torque values at 2 weeks were significantly higher in pH group ($107.5{\pm}6.2Ncm$, P<0.05). The mean values of bone-to-implant contact at 2 and 4 weeks were both higher in pH group ($93.0%{\pm}6.4%$ at 2 weeks, $88.6%{\pm}5.5%$ at 4 weeks) than in SA group ($49.7%{\pm}9.7%$ at 2 weeks, $47.3%{\pm}20.1%$ at 4 weeks) and CA group ($73.7%{\pm}12.4%$ at 2 weeks, $72.5%{\pm}10.9%$ at 4 weeks) with significances (P<0.05). The means of bone area showed significantly higher numbers in pH group ($39.5%{\pm}11.3%$ at 2 weeks, $71.9%{\pm}10.9%$ at 4 weeks, P<0.05). Conclusion: Our findings demonstrated that surface modification with pH buffering agent improved early osseointegration with superior biomechanical property.

In vivo comparison between the effects of chemically modified hydrophilic and anodically oxidized titanium surfaces on initial bone healing

  • Lee, Hyo-Jung;Yang, Il-Hyung;Kim, Seong-Kyun;Yeo, In-Sung;Kwon, Taek-Ka
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.94-100
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the combined effects of physical and chemical surface factors on in vivo bone responses by comparing chemically modified hydrophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydrophobic implant surfaces. Methods: Five modSLA implants and five anodized implants were inserted into the tibiae of five New Zealand white rabbits (one implant for each tibia). The characteristics of each surface were determined using field emission scanning electron microscopy, energy dispersive spectroscopy, and confocal laser scanning microscopy before the installation. The experimental animals were sacrificed after 1 week of healing and histologic slides were prepared from the implant-tibial bone blocks removed from the animals. Histomorphometric analyses were performed on the light microscopic images, and bone-to-implant contact (BIC) and bone area (BA) ratios were measured. Nonparametric comparison tests were applied to find any significant differences (P<0.05) between the modSLA and anodized surfaces. Results: The roughness of the anodized surface was $1.22{\pm}0.17{\mu}m$ in Sa, which was within the optimal range of $1.0-2.0{\mu}m$ for a bone response. The modSLA surface was significantly rougher at $2.53{\pm}0.07{\mu}m$ in Sa. However, the modSLA implant had significantly higher BIC than the anodized implant (P=0.02). Furthermore, BA ratios did not significantly differ between the two implants, although the anodized implant had a higher mean value of BA (P>0.05). Conclusions: Within the limitations of this study, the hydrophilicity of the modSLA surface may have a stronger effect on in vivo bone healing than optimal surface roughness and surface chemistry of the anodized surface.

Surface alterations following instrumentation with a nylon or metal brush evaluated with confocal microscopy

  • Kim, Young-Sung;Park, Jun-Beom;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.310-318
    • /
    • 2019
  • Purpose: Surface alterations of titanium discs following instrumentation with either a nylon brush or a metal brush were evaluated. Methods: A total of 27 titanium discs with 3 surface types (9 discs for each type), including machined (M) surfaces, sandblasted and acid-etched (SA) surfaces, and surfaces treated by resorbable blast media (RBM), were used. Three discs were instrumented with a nylon brush, another 3 discs were instrumented with a metal brush, and the remaining 3 discs were used as controls for each surface type. Surface properties including the arithmetic mean value of a linear profile (Ra), maximum height of a linear profile (Rz), skewness of the assessed linear profile (Rsk), arithmetic mean height of a surface (Sa), maximum height of a surface (Sz), developed interfacial area ratio (Sdr), skewness of a surface profile (Ssk), and kurtosis of a surface profile (Sku) were measured using confocal microscopy. Results: Instrumentation with the nylon brush increased the Ra, Sa, and Sdr of the M surfaces. On the SA surfaces, Ra, Sa and Sdr decreased after nylon brush use. Meanwhile, the roughness of the RBM surface was not affected by the nylon brush. The use of the metal brush also increased the Ra, Sa, and Sdr of the M surface; however, the increase in Sdr was not statistically significant (P=0.119). The decreases in the Rz, Sz, Ra, Sa, and Sdr of the SA surfaces were remarkable. On the RBM surfaces, the use of the metal brush did not cause changes in Ra and Sa, whereas Rz, Sz, and Sdr were reduced. Conclusions: Titanium surfaces were altered when instrumented either with a nylon brush or a metal brush. Hence, it is recommended that nylon or metal brushes be used with caution in order to avoid damaging the implant fixture/abutment surface.

Bioactive characteristics of an implant surface coated with a pH buffering agent: an in vitro study

  • Pae, Hyung-Chul;Kim, Su-Kyoung;Park, Jin-Young;Song, Young Woo;Cha, Jae-Kook;Paik, Jeong-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.366-381
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the effectiveness of conventional sandblasted, large-grit, acid-etched (SLA) surface coated with a pH buffering solution based on surface wettability, blood protein adhesion, osteoblast affinity, and platelet adhesion and activation. Methods: Titanium discs and implants with conventional SLA surface (SA), SLA surface in an aqueous calcium chloride solution (CA), and SLA surface with a pH buffering agent (SOI) were prepared. The wetting velocity was measured by the number of threads wetted by blood over an interval of time. Serum albumin adsorption was tested using the bicinchoninic acid assay and by measuring fluorescence intensity. Osteoblast activity assays (osteoblast adhesion, proliferation, differentiation, mineralization, and migration) were also performed, and platelet adhesion and activation assays were conducted. Results: In both the wetting velocity test and the serum albumin adsorption assay, the SOI surface displayed a significantly higher wetting velocity than the SA surface (P=0.000 and P=0.000, respectively). In the osteoblast adhesion, proliferation, differentiation, and mineralization tests, the mean values for SOI were all higher than those for SA and CA. On the osteoblast migration, platelet adhesion, and activation tests, SOI also showed significantly higher values than SA (P=0.040, P=0.000, and P=0.000, respectively). Conclusions: SOI exhibited higher hydrophilicity and affinity for proteins, cells, and platelets than SA. Within the limits of this study, it may be concluded that coating an implant with a pH buffering agent can induce the attachment of platelets, proteins, and cells to the implant surface. Further studies should be conducted to directly compare SOI with other conventional surfaces with regard to its safety and effectiveness in clinical settings.

Comparison of sandblasted and acid-etched surface implants and new hydrophilic surface implants in the posterior maxilla using a 3-month early-loading protocol: a randomized controlled trial

  • Kim, Hyeong Gi;Yun, Pil-Young;Kim, Young-Kyun;Kim, Il-hyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Objectives: In this prospective randomized controlled trial, we measured the primary and secondary stability of two surface-treated implants placed in the posterior maxilla, applied 3-month loading protocols, and compared and analyzed the short-term outcomes of the implants. Patients and Methods: From June 2018 to June 2019, patients with a residual bone height of 4 mm in the posterior maxilla were enrolled and randomly divided into two groups to place SA implants (Osstem Implants, Korea) in Group A and NH implants (Hiossen, USA) in Group B. Finally, 14 implants placed in 13 patients in Group A and 17 implants placed in 14 patients in Group B were analyzed. The measured primary and secondary stability of each implant was represented by implant stability quotient (ISQ), and treatment outcomes were evaluated. Results: Group A consisted of patients with an average age of 62.2 years (range, 48-80 years), and Group B consisted of patients with an average age of 58.1 years (range, 35-82 years). Primary stability was 73.86±6.40 and 71.24±5.32 in Groups A and B, respectively (P=0.222). Secondary stability was 79.07±5.21 in Group A and 78.29±4.74 in Group B (P=0.667). A steep increase in ISQ during the healing period was observed in Group B, though it was not significant (P=0.265). The mean follow-up period was 378.5±164.6 days in Group A and 385.3±167.9 days in Group B. All implants in each group met the success criteria, and the success rate was 100%. Conclusion: Two surface-treated implants placed in the posterior maxilla with greater than 4 mm alveolar bone height exhibited successful one-year treatment outcomes if a primary stability of 65 or higher ISQ was obtained and a 3-month early loading protocol was applied.

Decontamination methods to restore the biocompatibility of contaminated titanium surfaces

  • Jin, Seong-Ho;Lee, Eun-Mi;Park, Jun-Beom;Kim, Kack-Kyun;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.193-204
    • /
    • 2019
  • Purpose: The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. Methods: Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. Results: The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. Conclusions: None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.

THE EFFECT OF VARIOUS SURFACE TREATMENT METHODS ON THE OSSEOINTEGRATION (임플랜트의 표면처리 방법이 골유착에 미치는 영향에 관한 연구)

  • Choi Jeong-Won;Kim Kwang-Nam;Heo Seong-Joo;Chang Ik-Tae;Han Chong-Hyun;Baek Hong-Gu;Choi Yong-Chang;Wennerberg Ann
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • The purpose of this study was to compare the effects of various surface treatments by measuring removal torque on bone healing around titanium implants. 40 Screw-shaped cp titanium implants with length of 4mm, outer diameter of 3.75mm, and pitch-height of 0.5mm were used Group 1 was left as machined(control), Group 2 was blasted with $50{\mu}m\;Al_2O_3$, group 3 was blasted and etched in etching solution($NH_4OH : H_2O_2:H_2O= 1 : 1 : 5$) at $90^{\circ}C$ for 1 minute group 4 was blasted and oxidated under pure oxygen at $800^{\circ}C$. The implant surface roughness was analyzed with SEM and CLSM(Confocal Laser Scanning Microscope) and implants were placed in proximal tibial metaphysis of 10 New Zealand White rabbits. After 3 months of healing period, removal torque of each implant was measured to compare bone healing around implant. The results obtained were as follows 1. In SEM view, blasting increased the roughness of the surface, but etching of that rough surface decreased the roughness due to the removal of the tip of the peak. Oxidation also decreased the roughness due to formation of needle-like oxide grains on the implant surface. 2. The Sa value from CLSM was least in the machined group($0.47{\mu}m$), greatest in blasted group($1.25{\mu}m$), and the value decreased after etching($0.91{\mu}m$) and oxidation($0.94{\mu}m$). 3. The removal torque of etched group(24.5Ncm) was greater than that of machined group(16.7Ncm) (P<0.05), and was greatest in the oxidated group(40.3Ncm) and the blasted group(34.7Ncm).

  • PDF