• Title/Summary/Keyword: S2G-MD

Search Result 81, Processing Time 0.022 seconds

Purification and Properties of $\alpha$-Glucosidase from Mococcus halophilus (Pediococcus halophilus로부터 생성한 $\alpha$-Glucosidase의 정제 및 특성)

  • 민해기;이호근;문지웅;강국희
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.143-149
    • /
    • 1992
  • A bacterial strain No. 2, which highly produced a-glucosidase, was isolated from Kimchi and identified to be a similar species of Pediococcus halophilus. This enzyme was purified by protamine sulfate, ammonium sulfate fractionation, ion exchange and gel filtration. The maximal a-glucosidase activity was observed at pH 6.0 and this enzyme was stable at pH 6.0~ 7.5. The optimum temperature of this enzyme activity was $37^{\circ}C$, but enzyme activity was gradually lost above $37^{\circ}C$. This enzyme was activated by 10 mM MgCh and inhibited by 10 mM mercaptoethanol. The kinetics of PNPG(p-Nitrophenyl-a-D-glucopyranoside) and maltose were Kp0.52 mM/27.5 pg protein, $V_{max}$= 0.021 mM/min 27.5 ${\mu}g$ protein and $K_m$= 0.32 mMD7.5 ${\mu}g$ protein, $V_{max}$= 0.025 mM/min 27.5 ${\mu}g$ protein, respectively. The molecular weight of $\alpha$-glucosidase was about 37, 000.

  • PDF

Biokinetics of Protein Degrading Clostridium cadaveris and Clostridium sporogenes in Batch and Continuous Mode of Operations

  • Koo, Taewoan;Jannat, Md Abu Hanifa;Hwang, Seokhwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.533-539
    • /
    • 2020
  • A quantitative real-time polymerase chain reaction (QPCR) was applied to estimate biokinetic coefficients of Clostridium cadaveris and Clostridium sporogenes, which utilize protein as carbon source. Experimental data on changes in peptone concentration and 16S rRNA gene copy numbers of C. cadaveris and C. sporogenes were fitted to model. The fourth-order Runge-Kutta approximation with non-linear least squares analysis was employed to solve the ordinary differential equations to estimate biokinetic coefficients. The maximum specific growth rate (μmax), half-saturation concentration (Ks), growth yield (Y), and decay coefficient (Kd) of C. cadaveris and C.sporogenes were 0.73 ± 0.05 and 1.35 ± 0.32 h-1, 6.07 ± 1.52 and 5.67 ± 1.53 g/l, 2.25 ± 0.75 × 1010 and 7.92 ± 3.71 × 109 copies/g, 0.002 ± 0.003 and 0.002 ± 0.001 h-1, respectively. The theoretical specific growth rate of C. sporogenes always exceeded that of C. cadaveris at peptone concentration higher than 3.62 g/l. When the influent peptone concentration was 5.0 g/l, the concentration of C.cadaveris gradually decreased to the steady value of 2.9 × 1010 copies/ml at 4 h Hydraulic retention time (HRT), which indicates a 67.1% reduction of the initial population, but the wash out occurred at HRTs of 1.9 and 3.2 h. The 16S rRNA gene copy numbers of C. sporogenes gradually decreased to steady values ranging from 1.1 × 1010 to 2.9 × 1010 copies/ml. C. sporogenes species was predicted to wash out at an HRT of 1.6 h.

Molecular characterization and expression of cytosolic OASTL control cysteine metabolism in Mimosa pudica L.

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Hossain, Md. Amzad;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.224-224
    • /
    • 2017
  • In plants, cysteine(Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur containing secondary products. Cys formation is involved in the consecutive two reactions using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast and mitochondria. OASTL is able to produce mimosine with 3-hydroxy-4-pyridone (3H4P) in lieu of $H_2S$ for Cys. In this report, we describe the first time cloning, purification and characterization of cytosolic(cy)OASTL from M. pudica and its expression in Escherichia coli and try to find out the cross link between this OASTL and the mimosine formation and to elucidate the metabolic role of cy-OASTL in M. pudica. The purified recombinant protein was 34.7 KDa. The optimum reaction pH and temperature was 6.5 and $50^{\circ}C$, respectively. The Michaelis constant (Km) and the Vmax value of the enzyme was $252{\pm}25{\mu}M$ and $57{\pm}3{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for sulfide and $159{\pm}21{\mu}M$ and $58{\pm}2.4{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for OAS subsequently. After cleaving the His-tag, we tried to observe cy-OASTL to form mimosine with appropriate substrate but it was not successful. It may be concluded that cy-OASTL of the present study is only Cys specific, not mimosine.

  • PDF

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

The effect of upstream low-drag vortex generators on juncture flows

  • Younis, Md.Y.;Zhang, Hua;Hu, Bo;Uddin, Emad;Aslam, Jawad
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.355-367
    • /
    • 2019
  • Control of horseshoe vortex in the circular cylinder-plate juncture using vortex generator (VG) was studied at $Re_D$(where D is the diameter of the cylinder) = $2.05{\times}10^5$. Impact of a number of parameters e.g., the shape of the VG's, number of VG pairs (n), spacing between the VG and the cylinder leading edge (L), lateral gap between the trailing edges of a VG pair (g), streamwise gap between two VG pairs ($S_{VG}$) and the spacing between the two VG's in parallel arrangement ($Z_{VG}$) etc. were investigated on the horseshoe vortex control. The study is conducted using surface oil flow visualization and surface pressure measurements in low speed wind tunnel. It is observed that all the parameters studied have significant control effect, either by reduction in separation region or by lowering the adverse pressure along the symmetric axis upstream of the juncture.

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.

First Report of Leaf Spot of Datura metel Caused by Alternaria tenuissima in Korea

  • Aktaruzzaman, Md.;Kim, Joon-Young;Afroz, Tania;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.330-333
    • /
    • 2015
  • In June 2013, we collected leaf spot disease samples of Datura metel from Gangneung, Gangwon Province, Korea. The symptoms observed were small circular to oval dark brown spots with irregular in shape or remained circular with concentric rings. We isolated the pathogen from infected leaves and cultured the fungus on potato dextrose agar. We examined the fungus morphologically and confirmed its pathogenicity according to Koch's postulates. The results of morphological examinations, pathogenicity tests, and the rDNA sequences of the internal transcribed spacer regions (ITS1 and ITS4), glycerol-3-phosphate dehydrogenase (G3PDH) and the RNA polymerase II second largest subunit (RPB2) gene sequence revealed that the causal agent was Alternaria tenuissima. To the best of our knowledge, this is the first report of leaf spot of D. metel caused by A. tenuissima in Korea as well as worldwide.

First Report of Gray Mold Disease of Sponge Gourd (Luffa cylindrica) Caused by Botrytis cinerea in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Kim, Byung-Sup;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.107-110
    • /
    • 2016
  • In October 2014, an occurrence of gray mold was observed on young fruits of sponge gourd (Luffa cylindrica) in Sachunmun, Gangneung, South Korea. Symptoms included abundant mycelia growth with gray conidia on young fruits and finally rotting the fruits. The fungus was isolated from symptomatic fruits and its pathogenicity was confirmed. Based on the morphological features and sequence analysis of ITS-5.8S rDNA, G3PDH, HSP60, and RPB2 genes, the pathogen was identified as Botrytis cinerea Pers. This is the first report of gray mold caused by B. cinerea on L. cylindrica in Korea.

A Conformational Isomer of Soulattrolide from the Stem Bark of Calophyllum symingtonianum and Its Antibacterial Activity

  • Susanti, Deny;Attoumani, Nissad;Taher, Muhammad;Rezali, Mohd Fazlin;Sohrab, Md. Hossain;Hasan, Choudhury Mahmood;Zakaria, Zainul Amiruddin
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Callophylum symingtonianum (Guttiferae), an evergreen broad-leaved tree that usually grows in hill forests, can be found distributed in the Malay Peninsula. The barks, leaves, flowers and seeds is often used medicinally to treat diarrhea and rheumatism. In the present study, we isolated two inophyllum type coumarins, 12-O-ethylinophyllum D (1) and iso-soulattrolide (2) from the stembarks of C. symingtonianum together with their antibacterial activity. The compounds were isolated by chromatographic methods on a silica gel. The structures were established by spectroscopic methods including UV, IR, (1D and 2D) NMR and mass spectrometry as well as by comparison with several literature sources. The antibacterial activity of those compounds was tested using a disc-diffusion assay against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Both compound exhibited mild inhibition against P. aeruginosa with both $111{\mu}g/ml$ MIC value. Compound 2 also inhibits S. aureus with $25{\mu}g/ml$ MIC value.

Genotype-Environment Interaction and Stability Analysis for Yield and Yield Contributing Characters in Soybean(Glycine max L.)

  • Islam, Mohammad Saiful;Newaz, Muhammad Ali;Islam, Md. Jahidul;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.6
    • /
    • pp.504-510
    • /
    • 2007
  • GE interaction is the expression of differential genotypic adaptation across environments. GE interactions through different stability parameters and performance of the traits of genotypes were studied. The traits were days to maturity, pod length, number of pods/ plant, 100-seed weight and seed yield/plant in ten soybean genotypes across five environments. Significant differences were observed for genotypes, environments and GE interactions. Stability analysis after Eberhart and Russell's model suggested that the genotypes used in this study were all more or less responsive to environmental changes. Most of the genotypes perform better in Env.3. Based on phenotypic indices(Pi), regression ($S^2di$) genotype Garurab was found fairly stable for days to maturity. BS-23 and G-2120 may be considered as stable genotype for pod length. All the genotypes except G-2120 showed that the genotypes were relatively unstable under environmental fluctuation for the number of pod/plant. Genotype BS-23 was found most stable among all the genotypes for 100-seed weight. BS-3 and Gaurab was the most stable and desirable genotypes for seed yield in soybean.