• Title/Summary/Keyword: S.pneumoniae type 4

Search Result 22, Processing Time 0.024 seconds

Prevalence and clinical manifestations of macrolide resistant Mycoplasma pneumoniae pneumonia in Korean children

  • Lee, Eun;Cho, Hyun-Ju;Hong, Soo-Jong;Lee, Jina;Sung, Heungsup;Yu, Jinho
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.5
    • /
    • pp.151-157
    • /
    • 2017
  • Purpose: Macrolide resistance rate of Mycoplasma pneumoniae has rapidly increased in children. Studies on the clinical features between macrolide susceptible-M. pneumoniae (MSMP) and macrolide resistant-M. pneumoniae (MRMP) are lacking. The aim of this study was to identify the macrolide resistance rate of M. pneumoniae in Korean children with M. pneumoniae penupmonia in 2015 and compare manifestations between MSMP and MRMP. Methods: Among 122 children (0-18 years old) diagnosed with M. pneumoniae pneumonia, 95 children with the results of macrolide sensitivity test were included in this study. Clinical manifestations were acquired using retrospective medical records. Results: The macrolide resistant rate of M. pneumoniae was 87.2% (82 of 94 patients) in children with M. pneumoniae pneumonia. One patient showed a mixed type of wild type and A2063G mutation in 23S rRNA of M. pneumoniae. There were no significant differences in clinical, laboratory, and radiologic findings between the MSMP and MRMP groups at the first visit to our hospital. The time interval between initiation of macrolide and defervescence was significantly longer in the MRMP group ($4.9{\pm}3.3$ vs. $2.8{\pm}3.1days$, P=0.039). Conclusion: The macrolide resistant rate of M. pneumoniae is very high in children with M. pneumoniae pneumonia in Korea. The clinical manifestations of MRMP are similar to MSMP except for the defervescence period after administration of macrolide. Continuous monitoring of the occurrence and antimicrobial susceptibility of MRMP is required to control its spread and establish strategies for treating second-line antibiotic resistant M. pneumoniae infection.

Real-Time PCR Analysis of SHV Extended-Spectrum beta-Lactamases Producing Klebsiella pneumoniae (SHV ESBL생성 Klebsiella pneumoniae 균주의 실시간중합효소반응분석)

  • Yang, Byoung-Seon;Yook, Keun-Dol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.153-157
    • /
    • 2009
  • The production of extended-spectrum ${\beta}$-lactamases ($ESBL_S$) of the TEM or SHV type by bacterial pathogens is a major threat to the use of the clinically important expanded-spectrum cephalosporins. The characterization of the SHV ESBLs producing Klebsiella pneumoniae strains present in clinical isolates is time-consuming processes. We describe here in the development of a novel system, which consists of a real time PCR. We found 11 K. pneumoniae strains to be presumptive strains ESBLs producers by clinical and laboratory standards institute (CLSI) guidelines. The double disk synergy test showed 8 ESBL positive and conventional PCR showed 10 SHV ESBL positive, which were K. pneumoniae strains isolates. By real time PCR analysis, SHV gene in 11 of 11 strains were identified. When sequencing analysis was compared with real time PCR, both analysis were presented 99% similarity. In this study, we used a rapid, sensitive, and specific real-time PCR (RT-PCR) method for detection of the assay SHV ESBL producing K. pneumoniae strains in clinical isolates.

  • PDF

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type IV

  • Kim, S.N.;Min, K.K.;Choi, I.H.;Kim, S.W.;Pyo, S.N.;Rhee, D.K.
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.173-177
    • /
    • 1996
  • The Pneumococcus, Streptococcus pneumoniae, has an ample polysaccharide (PS) capsule that is highly antigenic and is the main virulence factor of the organism. The capsular PS is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 4 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based medium were found to support luxuriant growth of pneumococcus type 4 at the same level. Therefore in this study, the Casitone based medium was used to study optimization of the culture condition because of BHI broth's high cost and complex nature. The phase of growth which accomodated maximum PS production was exponential phase. Concentrations of glucose greater than 0.8% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium, copper, and magnesium ions) had adverse effects on growth and PS production. On the other hand, low level aeration and supplementation of 3 mg/l concentration of asparagine, phenylalanine, or threonine were beneficial for increased PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Prevalence of CTX-M-type Extended-Spectrum $\beta$-Lactamases Producing Escherichia coli and Klebsieilla pneumoniae Isolates in General Hospitals in 2005 (임상에서 분리된 CTX-M형 Extended-Spectrum $\beta$-Lactamases를 생산하는 Escherichia coli와 Klebsiella pneumoniae의 유행)

  • Kim, Yun-Tae;Kim, Tae-Un
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.342-351
    • /
    • 2006
  • The aim of this study was to survey susceptibilities of Escherichia coli and Klebsiella pneumoniae isolates against cefotaxime and to determine the prevalences of CTX-M type extended-spectrum $\beta$-lactamases (ESBLs) producing E. coli and K. pneumoniae in Korea. During the period of February to July, 2005, 153 E. coli and 52 K. neumoniae isolates were collected from 2 hospitals in Busan. Antimicrobial susceptibilities to cefotaxime were tested by the disk diffusion method. ESBL production of E. coli and K. pneumoniae was determined by the double disk synergy test. MICs of $\beta$-lactam antibiotics were determined by the agar dilution method. Blac$_{CTX-M}$ genes of the organism were detected by PCR. Among 153 isolates of E. coli and 52 isolates of K. neumoniae, 27 (17.6%) and 25 (48.0%) were intermediate or resistant to cefotaxime, respectively. Twenty-three (15.0%) isolates out of 153 E. coli and 13 (25.0%) out of 52 K. neumoniae isolates showed positive results for ESBL by the double disk synergy test. Twenty isolates out of 23 ESBL producing E. coli and 12 out of 13 ESBL producing K. neumoniae isolates harbored biacTx-M gene,11 of ESBL producing E. coli and 12 of ESBL producing K. neuinoniae isolates harbored bla$_{CTX-M}$ gene, 11 of the ESBL producing E. coli and 2 of ESBL producing K. neumoniae isolates harbored bla$_{TEM}$ gene, and 1 of the ESBL producing E. coli and 12 of ESBL producing K. neumoniae isolates harbored bla$_{SHV}$ gene. E. coli and K. neumoniae isolates producing CTX-M-type ESBLs were not uncommon in Korea. It is thought that continuous survey are necessary for inspecting the spread and novel variants of CTX-M-type ESBL genes. Further me]'e investigation and research on ESBL producing strains are needed in order to prevent the spread of resistant bacteria.

The Types of Extended-Spectrum $\beta$-Lactamase (ESBL) Produced by Enteric Bacteria, Klebsiella pneumoniae and Escherichia coli Isolated from Sewage of Wastewater Treatment Plant at Minragdong in Busan, Korea (부산 민락동 오수처리장에서 분리된 장내세균 Klebsiella pneumoniae와 Escherichia coli가 생성한 광범위 베타 락탐(Extended-Spectrum $\beta$-Lactamase, ESBL) 분해효소의 유형)

  • Lee, Hun-Ku
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.163-169
    • /
    • 2009
  • This study was performed to investigate the type of extended-spectrum $\beta$-lactamases (ESBL) produced by bacteria isolated from the sewage of wastewater treatment plant at Minragdong, Suyong-gu in Busan. The facility is located at sushi restaurants and guides its drain water to the wastewater treatment plant at Yonghodong, Nam-gu in Busan. Samples were collected on January, 2009. A total of 19 strains were selected as potential ESBL positive strains through a double disk synergy test. On the basis of the results from biochemical tests including indole, methyl-red, Voges-Proskauer, Simmon's citrate, decarboxylase-dihydrolase and sugar-fermentation tests, the 19 strains were identified with 16 strains of Escherichia coli and 3 strains of Klebsiella pneumoniae. Out of 19 strains, 4 transconjugants against Escherichia coli J53, which is sodium azide resistant recipient strain, were obtained. The plasmids isolated from transconjugants were used for PCR analysis. The type of each extended-spectrum $\beta$-lactamase (ESBL) produced by the strains was determined on the basis of isoelectric focusing analysis and DNA sequencing. The results indicated that the types of ESBL from Klebsiella pneumoniae were SHV-12 (3 strains), and Escherichia coli was SHV-12/TEM-1 (1 strain), respectively.

Role of Interleukin-4 (IL-4) in Respiratory Infection and Allergy Caused by Early-Life Chlamydia Infection

  • Li, Shujun;Wang, Lijuan;Zhang, Yulong;Ma, Long;Zhang, Jing;Zu, Jianbing;Wu, Xuecheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1109-1114
    • /
    • 2021
  • Chlamydia pneumoniae is a type of pathogenic gram-negative bacteria that causes various respiratory tract infections including asthma. Chlamydia species infect humans and cause respiratory infection by rupturing the lining of the respiratory which includes the throat, lungs and windpipe. Meanwhile, the function of interleukin-4 (IL-4) in Ch. pneumoniae respiratory infection and its association with the development of airway hyperresponsiveness (AHR) in adulthood and causing allergic airway disease (AAD) are not understood properly. We therefore investigated the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. In this study, Ch. pneumonia strain was propagated and cultured in HEp-2 cells according to standard protocol and infant C57BL/6 mice around 3-4 weeks old were infected to study the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. We observed that IL-4 is linked with Chlamydia respiratory infection and its absence lowers respiratory infection. IL-4R α2 is also responsible for controlling the IL-4 signaling pathway and averts the progression of infection and inflammation. Furthermore, the IL-4 signaling pathway also influences infection-induced AHR and aids in increasing AAD severity. STAT6 also promotes respiratory infection caused by Ch. pneumoniae and further enhanced its downstream process. Our study concluded that IL-4 is a potential target for preventing infection-induced AHR and severe asthma.

Types of Extended-Spectrum β-Lactamase Produced in Enteric Bacteria Isolated from Sewage Plant Drain Water (하수처리수에서 분리된 장내세균의 광범위 베타락탐분해효소의 유형)

  • Kim, Gun-Do;Lee, Hun-Ku
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.676-682
    • /
    • 2010
  • This study focused on typing of the extended-spectrum $\beta$-lactamase (ESBL) produced in organisms isolated from a natural environment, rather than a clinical setting. Samples were collected from drain water issuing from a sewage plant in Kwanganri (Busan, Korea). Following double disk synergy testing, 29 strains were selected as potential ESBL positive strains. Of these, 15 strains were transconjugants of the sodium azide resistant recipient strain Escherichia coli J53 and analyzed biochemically including indole, methyl-red, Voges-Proskauer, Simmon's citrate, decarboxylase-dihydrolase and sugar-fermentation tests. The tests classified the 15 strains as Klebsiella pneumoniae (n=13) and Escherichia coli (n=2). The type of ESBL from each strain was deduced by isoelectric focusing point analysis and DNA sequencing. The results indicated that the types of ESBL were SHV-12 (n=4) and SHV-12/TEM-1 (n=9) from K. pneumoniae and TEM-1 (n=2) from E. coli strains.

The Types of Extended-Spectrum ${\beta}$-Lactamases Isolated from Suyeong Sewage Disposal Plant, Busan Environmental Corporation (부산 수영공공하수처리시설에서 분리된 광범위 항균제 베타락 탐 분해효소(Extended-Spectrum ${\beta}$-Lactamase, ESBL) 유형)

  • Kim, Gun-Do;Lee, Hun-Ku
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • The study performed to identify the type of ESBL against strains which are producing extendedspectrum ${\beta}$-lactamases and isolated from sewage in Suyeong sewage disposal plant, Busan Environmental Corporation. By the standard activated sludge method, Suyeong sewage disposal plant purify living and lavatory sewage gathering from the northeast Busan and the facility purify total 550,000 tons of living sewage disposal a day. 14 strains were isolated by double disk synergy test and the third generation cepha-antibiotics test. Indole, methyl-red, Voges-Proskauer, Simmon's citrate, decarboxylasedihydrolase and sugar-fermentation tests identified as Klebsiella pneumoniae (n=4) and Escherichia coli (n=10). Plasmid-mediated transmission test against isolated 14 strains proved 11 strains transmitted resistance to recipient E. coli J53 (sodium $azide^R$, $ceftazidime^S$). 9 strains of conjugant were expressed ESBL genes transferred from parental strain but 2 conjugants did not expressed. The type of ESBL from each strain was determined by isoelectric focusing points, DNA and amino acids sequencing. The results indicated that the types of ESBL transmitted to recipient E. coli J53 were TEM-1, the parental TEM type and SHV-12 type.

Purification of Capsular Polysaccharide Produced by Streptococcus pneumoniae Serotype 19A

  • Jung, Seung-Jin;Seo, Eun-Seong;Yun, Sang-Il;Minh, Bui Nguyet;Jin, Sheng-De;Ryu, Hwa-Ja;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.734-738
    • /
    • 2011
  • Streptococcus pneumoniae is a major cause of invasive infection in young infants and older adults. There are currently 90 capsular serotypes identified and 23 serotypes (1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F, and 33F) are responsible for about 90% of invasive disease. Among the more than 90 different S. pneumoniae serotypes, serotype 19A is globally very prevalent. A simplified purification procedure including adjustment of cell lysate pH to 4.5, fractionation with 50. 80% ethanol, and dialysis rendered capsular polysaccharide (CPS) in a yield of $31.32{\pm}3.11$ mg from 1 l culture (75% recovery after lyses). The product contained only 69.6 ${\mu}g$ of protein (99.78% purity) and 0.8mg (sum of the precipitants from 50~60%, 60~70%, and 70~80%) of nucleic acid (97.45% purity). The purified CPS was conjugated with bovine serum albumin; the product size ranged from 100 to 180 kDa.