• Title/Summary/Keyword: S. coelicolor

Search Result 87, Processing Time 0.032 seconds

Expression Pattern of Acetyl Xylan Esterase of Streptomyces coelicolor A3(2) in Escherichia coli (Escherichia coli에서의 Streptomyces coelicolor A3(2)의 acetyl xylan esterase 발현 양상)

  • 이인숙;윤석원;정상운;오충훈;김재헌
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • We cloned a gene encoding acetyl xylan esterase(axeA) of Streptomyces coelicolor A3(2) and studied its expression pattern in Escherichia coli. The full sequence of axeA was amplified by PCR. Sequence analysis of the PCR product revealed an open reading frame of 1,008 nucleotides encoding a protein consisted of 335 amino acid residues, with a calculated molecular mass of about 38 kDa. The base sequence showed 98% homology to the same gene of Streptomyces lividans. Two different kinds of acetyl xylan esterases were produced in Escherichia coli(pLacI) by IPTG induction; their molecular weights were 38 kDa and 34 kDa, respectively. Of these, 38 kDa protein seemed to be a total protein holding N-terminal signal peptide region, whereas 34 kDa protein seemed to be a matured protein without signal peptide which was produced by peptide bond cleavage between two amino acid residues of alanine 41 and alanine 42.

Modulation of Escherichia coli RNase E. Action by RraAS2, a Streptomyces coelicolor Ortholog of RraA (Streptomyces coelicolor의 RraA 동족체인 RraAS2에 의한 Escherichia coli RNase E 활성조절)

  • Ahn, Sang-Mi;Shin, Eun-Kyoung;Yeom, Ji-Hyun;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.93-97
    • /
    • 2008
  • RraA is a recently discovered protein inhibitor that regulates the enzymatic activity of RNase E, which plays a major role in the decay and processing of RNAs in Escherichia coli. It has also been shown to regulate the activity of RNase ES, a functional Streptomyces coelicolor ortholog of RNase E, which has 36% identity to the amino-terminal region of RNase E. There are two open reading frames in S. coelicolor genome that can potentially encode proteins having more than 35.4% similarity to the amino acid sequence of RraA. DNA fragment encoding one of these RraA orthologs, designated as RraAS2 here, was amplified and cloned in to E. coli vector to test whether it has ability to regulate RNase E activity in E. coli cells. Co-expression of RraAS2 partially rescued E. coli cells over-producing RNase E from growth arrest, although not as efficiently as RraA, induced by the increased ribonucleolytic activity in the cells. The copy number of ColEl-type plasmid in these cells was also decreased by 14% compared to that in cells over-producing RNase E only, indicating the ability of RraAS2 to inhibit RNase E action on RNA I. We observed that the expression level of RraAS2 was lower than that of RraA by 4.2 folds under the same culture condition, suggesting that because of inefficient expression of RraAS2 in E. coli cells, co-expression of RraAS2 was not efficiently able to inhibit RNase E activity to the level for proper processing and decay of all RNA species that is required to restore normal cellular growth to the cells over-producing RNase E.

Profile Analysis of Proteins Related with Hydrogen Peroxide Response in Strep-tomyces coelicolor (Muller) (Streptomyces coelicolor (Muller)의 과산화수소 대응 반응에 관련된 단백질 양상의 분석)

  • 정혜정;노정혜
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.166-174
    • /
    • 1993
  • Streptomyces coeUc%r (Muller) cells were treated with $100 \mu$M hydrogen peroxide for I hour and proteins synthesized during hydrogen peroxide stress were labeled with L-[$^{35}S$]-methionine. Total cellular proteins were extracted and analyzed by two-dimensional polyacrylamide gel electrophoresis. In exponential growth phase, synthesis of about 100 proteins was increased by hydrogen peroxide treatment. These proteins were named as Pin (£eroxide-inducib]e) proteins and classified into 4 subgroups according to their induction time after hydrogen peroxide treatment. About 60 of them were found to be induced within 20 minutes and maintained throughout I hour of treatment. In stationary growth phase. synthesis of 62 proteins was increased by hydrogen peroxide and 21 of them were the same Pins found in exponential growth phase. Proteins from the mutants which are resistant to hydrogen peroxide were obtained in exponential growth phase and compared with those from the wild type on two-dimensional gel. The three mutants, N7, N9. and N24, were found to have higher constitutive leve]s of ]5, 17, and 15 Pin proteins respectively, than the wild type. 9 of these Pin proteins (D74.7a, E76.0c, E23.3. F50.7, F47.2a. F25.5, G39.6b, G24.0, H39.6a) increased in two of the three mutants and 3 proteins (F39.7, H6I.7. 120.8) increased in all of the three mutants. These proteins might play important roles in the response of S. coelic%r to hydrogen peroxide.

  • PDF

Novel Vancomycin Resistance System in Streptomyces coelicolor

  • Hong, Hee-Jeon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.143-147
    • /
    • 2005
  • The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high-level resistance to vancomycin. The van genes are organised into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. vanHAX are orthologuous to genes found in vancomycin resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac, rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterised vancomycin-resistance clusters from pathogens. VanK is essential for vancomycin resistance in S. coelicolor and it is required for adding Gly branch to stem peptides terminating D-Ala-D-Lac. Because VanK can recognise D-Lac-containing precursors but the constitutively expressed femX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, vancomycin-induced expression of VanHAX in a vanK mutant is lethal. Further, femX null mutants are viable in the presence of glycopeptide antibiotics but die in their absence. Bioassay using vanJp-neo fusion reporter system also showed that all identified inducers for van genes expression were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer.

  • PDF

Streptomyces coelicolor 의 Catalase 들의 분석

  • 김형표;이종수;하영칠;노정혜
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 1992
  • Srrepromycec. corlirolar produces at least 4 catalase activity bands with different electrophoretic mobilities on polyacrylamide gel which vary during development. Spores and mycelia at stationary phase produced all the activity bands(Cat1. 760 kr); Cat3-I, 170 kD: Cat3-2, 140 kD: Cat3-3. 130 kD; Cat4, 70 kD) except for Cat2 (300 kD). Mycelia at mid-logarithmic phase produced only Cat2 and Cat3-2 bands, and mycelia at late-logarithmic phase produced bands except Catl and Cat\ulcorner. Catalase-deficient mutants were screened in S. coelicalur by H201 bubbling test following NTG mutagenesis. Wc tested sevcral non-bubbling or slow-bubbling mutants for their catalase activities. The overall activities in cell extracts decreased more than 5 fold. Activity bands in native gel selectively decreased in intensity or disappeared. In all the non-bubbling mutants testcd, Cat3-2 band decreased significantly or disappeared. suggesting that Cat3-2 is the major catalase. The selective disappearance of bands in mutants suggest that each band is governed by different genes. We purified catalase activity from -:ell extracts obtained at late-logarithmic phase. Following chromatographies on Sepharose CL-4B. DEAE Sepharose CL-6B. Phcnyl Sepharose CL-4B. and hydroxylapatite columns. only the Cat3-2 activity was obtained. The native form of Cat3-2 has molecular weight of approximately 140 kD, judged by gel electrophoresis. Thc electrophoretic mobility on SDS-polyactylamide gel suggests that this enzyme contains 2 identical subunits of 67 kD.

  • PDF

Isolation, Identification, and Characterization of Ornithine-Producing Enterococcus faecalis OA18 from Kefir Grain (케피어그레인으로 제조한 요쿠르트로부터 Enterococcus faecalis OA18 균주의 분리 및 특성규명)

  • Yu, Jin-Ju;Kim, Su-Gon;Seo, Kyoung-Won;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • Lactic acid bacteria (LAB) OA18 was isolated from yogurt prepared by using Kefir Grain as a starter. The OA18 strain was a Gram-positive, cocci-type bacterium, and able to grow anaerobically with $CO_2$ production. The OA18 strain grew well on MRS broth supplemented with 50 mM arginine at $30-37^{\circ}C$ and pH of 7.0-9.0. The optimum temperature and pH for growth are $37^{\circ}C$ and pH 7.0. The isolate fermented ribose, D-glucose, cellobiose, D-trehalose, but not L-xylose, D-melibiose, and inositol. The 16S rRNA gene sequence of the isolate showed 99.8% homology with the Enterococcus faecalis 16S rRNA gene (Access no. AB012212). Based on the biochemical characteristics and 16S rRNA gene sequence analysis data, it was identified and named as E. faecalis OA18. The E. faecalis OA18 strain showed a high ornithine-producing capacity in the presence of arginine and also showed an antimicrobial activity against Streptomyces strains such as Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus. The cell growth of E. faecalis OA18 strain was maintained in MRS broth with a NaCl concentration of 0-7%.

Enhanced Prodiginines Production in Streptomyces coelicolor M511 by Stress of Acidic pH Shock (산성 pH 충격 스트레스에 의한 스트랩토마이세스 시에리컬러 M511의 프로디지닌 생산 증대)

  • Mo, Sang-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.273-277
    • /
    • 2010
  • Undecylprodiginine and streptorubin B are red-pigmented antibiotics produced by Streptomyces coelicolor A3(2). In this study, we investigated the correlation between productivity of these red-pigmented antibiotics and stress of pH shock. Biosynthesis of these red-pigmented antibiotics is enhanced at acidic pH shock on solid R2YE medium. The optimal pH shock is pH 4 which led to 1.6 fold and two-fold increase in the production of undecylprodiginine and streptorubin B as compared with control, respectively. In addition, the extract of pH 4 shocked cells exhibited a remarkable activity against Trichophyton mentagrophytes. However, neutral and basic pH shock did not give raise to promote a production of these red-pigmented antibiotics as well as antifungal activity. Thus, although the acidic pH shock is simple and easy method, it should be extremely effective approach to enhance a productivity of these red-pigmented antibiotics and other secondary metabolites.

NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-ʟ-Galactose Catabolism in Streptomyces coelicolor A3(2)

  • Tsevelkhorloo, Maral;Kim, Sang Hoon;Kang, Dae-Kyung;Lee, Chang-Ro;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.756-763
    • /
    • 2021
  • Agarose is a linear polysaccharide composed of ᴅ-galactose and 3,6-anhydro-ʟ-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-ʟ-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-ʟ-galactonate, and SCO3480 is a 3,6-anhydro-ʟ-galactonate cycloisomerase that converts 3,6-anhydro-ʟ-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50℃, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.