• Title/Summary/Keyword: S-wave speed

Search Result 497, Processing Time 0.025 seconds

Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator (초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구)

  • Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

Wave passage effect of seismic ground motions on the response of multiply supported structures

  • Zhang, Y.H.;Lin, J.H.;Williams, F.W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.655-672
    • /
    • 2005
  • Seismic random responses due to the wave passage effect are extensively investigated by using the pseudo excitation method (PEM). Two examples are used. The first is very simple but also very informative, while the second is a realistic suspension bridge. Numerical results show that the seismic responses vary significantly with wave speed, especially for low velocity or large span. Such variations are not monotonic, especially for flexible structures. The contributions of the dynamic and quasi-static components depend heavily on the seismic wave velocity and the natural frequencies of structures. For the lower natural frequency cases, the dynamic component has significant effects on the dynamic responses of the structure, whereas the quasi-static component dominates for higher natural frequencies unless the wave speed is also high. It is concluded that if insufficient data on local seismic wave velocity is available, it is advisable to select several possible velocity values in the seismic analysis and to choose the most conservative of the results thus obtained as the basis for design.

Concrete compressive strength identification by impact-echo method

  • Hung, Chi-Che;Lin, Wei-Ting;Cheng, An;Pai, Kuang-Chih
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • A clear correlation exists between the compressive strength and elastic modulus of concrete. Unfortunately, determining the static elastic modulus requires destructive methods and determining the dynamic elastic modulus is greatly complicated by the shape and size of the specimens. This paper reports on a novel approach to the prediction of compressive strength in concrete cylinders using numerical calculations in conjunction with the impact-echo method. This non-destructive technique involves obtaining the speeds of P-waves and S-waves using correction factors through numerical calculation based on frequencies measured using the impact-echo method. This approach makes it possible to calculate the dynamic elastic modulus with relative ease, thereby enabling the prediction of compressive strength. Experiment results demonstrate the speed, convenience, and efficacy of the proposed method.

Measurement of True Forward Velocity of Agricultural Machinery using Ultrasonic-wave (초음파를 이용한 농업기계의 실제 주행 속도 측정)

  • Kim, K.U.;Shin, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.301-310
    • /
    • 1994
  • The feasibility of using ultrasonic-wave doppler sensors for a measurement of the actual ground speed of agricultural machines was investigated. The actual ground speed is estimated from the doppler shift frequencies of the two ultrasonic-waves transmitted to and received from a moving object. A prototype of the speed-measurement system was designed and constructed for the performance test. The measurement system showed a good performance with a flat surface at speeds lower than 3m/s. However, it was failed to receive the reflected signals from the rough and irregular soil surfaces. Further researches to solve this problem and to improve its performance are now underway.

  • PDF

Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007 (2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정)

  • Choi, Byoung-Ju;Park, Yong-Woo;Kwon, Kyung-Man
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.

Empirical Analysis Research on Waterdrop's Deformation by Shock Wave (충격파에 의한 물방울의 변형에 관한 경험적 해석 연구)

  • Hong, Yun Ky;Yeom, Geum Su;Moon, Kwan Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.638-644
    • /
    • 2016
  • In this research, theoretical study on empirical analysis method to estimate waterdrop's deformation by shock wave is presented. Flow field is calculated using theoretical and empirical relations. Waterdrop's deformation including movement, size, mass, and orientation is modeled using empirical relations derived from existing experimental data. Developed method is applied to specific flight examples with arbitrary flight speed and vehicle's configuration. The flight speed is assumed to Mach number of 2 and 4. The diameter of waterdrop is varied from 1 to 5 mm. Waterdrops along the stagnation line in front of hemispherical nose with the radius of 50 mm and around a cone-shaped side wall with the half angle of 20 degree are considered. It is found that the maximum diameter of the waterdrop is increased up to 2.77 times the initial diameter. The mass is conserved more than 66.7 %. In the case of a cone-shaped side wall, waterdrop's orientation angles defined from the flight direction when the Mach number is 2 and 4 are calculated as 33.0 and 25.6 degree, respectively.

Characteristics of long-period swells measured in the near shore regions of eastern Arabian Sea

  • Glejin, Johnson;Kumar, V. Sanil;Amrutha, M.M.;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.312-319
    • /
    • 2016
  • Measured wave data covering two years simultaneously at 3 locations along the eastern Arabian Sea reveals the presence of long-period (peak wave period > 18 s) low-amplitude waves (significant wave height < 1 m) and the characteristics of these waves are described in this article. In a year, 1.4-3.6% of the time, the low-amplitude long-period swells were observed, and these waves were mainly during the nonmonsoon period. The wave spectra during these long-period swells were multi-peaked with peak wave period around 18.2 s, the secondary peak period around 13.3 s and the wind-sea peak period at 5 s. The ratio of the spectral energy of the wind-sea peak and the primary peak (swell) was slightly higher at the northern location (0.2) than that at the southern location (0.15) due to the higher wind speed present at the northern location.

Coherent Structures beneath Wind-Generated Deepwater Waves (심해 풍파 아래에서의 응집 구조)

  • Oh, Sang-Ho;Suh, Kyung-Duck;Mizutani, Natsuki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.16-28
    • /
    • 2007
  • The results of experimental investigation of coherent structures beneath wind-generated waves in deep water are presented. Vorticity fields of deepwater wind waves were visualized by analyzing the velocity fields obtained by PIV measurements under different wind and fetch conditions. In addition, spatio-temporal evolution of the coherent structures and subsequent changes in vertical profiles of the instantaneous vorticity were qualitatively examined. It was found that a coherent structure is formed right underneath the wave crest and traveled in phase with the surface wave. The direction of rotation of the coherent structure was contrary to the wave orbital motion when wind speed is less than 10 m/s, while was same as the wave orbital motion when wind speed is approximately 13 m/s and wave breaking occurs at the wave crest. In the near-surface region, complex vortex-vortex interactions were observed according to the traveling of the coherent structure. In contrast, coherent structures far below the water surface changed little due to weak influence of orbital motion by the surface waves.

Correction Methods and Validation for Environmental Conditions in the Ice Field Trials (빙해역 시운전 해석을 위한 환경조건 보정 방법 및 검증)

  • Kim, Hyun Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.117-127
    • /
    • 2019
  • Vessel's ice speed performances will be verified in ice sea trial but environmental conditions of ice fields are changeable according to the weather condition of ice trial area. Speed performance has to correct in the no wind, wave and current etc. after sea trial. Especially finding ice fields which is exact the same as owner's ice thickness and strength requirements is not easy. Therefore speed correction according to environment condition has to be done after sea trial measurements. Correction methods for ice thickness, ice strength, wave, wind and ship draft, trim, ice drift etc. are checked in ice sea trial based on literature review such as ISO standard, ITTC recommendation, journal papers and proceedings of conferences. Possibility of application for current and ice drift correction in ice field are discussed and measuring schemes and procedures of correction methods are described in this paper. All of correction schemes are calculated for 'Araon' which is ice breaking research vessel with Arctic and Antarctic ice field test results. Analyzed results shows that Araon is satisfied with her official ice speed performance of 3 knots with 10MW power at 1m ice thickness, 570kPa ice flexural strength.

Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works (급수용 급속공기밸브의 성능특성에 관한 실험적 연구)

  • Lee, Sun Kon;Kaong, Sae Ho;Yang, Cheol Soo;Woo, Chang Ki
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.