• Title/Summary/Keyword: S-slope

Search Result 2,223, Processing Time 0.034 seconds

A case study on the DB using geological data for mitigation of slope failure (사면붕괴 피해저감을 위한 지질 DB 구축사레)

  • Park, Sung-Wook;Kim, Choon-Sik;Kim, Yang-Hee;Kang, In-Joon;Lee, Soo-Gon;Yoon, Yong-Sun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.277-281
    • /
    • 2007
  • Quite a while ago, Organizations which have slope DB system was running slope of management in several. Frequently, Slope failure was happened by abnormal weather and limit of valuation system at the managed slope. Analysis of other organization slope DB systems is very important that slope DB system maintains same regions on geology. In Korea, slope DB system was running at KEC(Korea Expressway Corporation), Korail(Korea Railroad), and KIGAM(Korea Institute of Geoscience and Mineral Resources). We research theirs DB constructing. For reviewed slope DB system of other country, we searched NLIC(Natural Landslide Information Center)'s DB system in U.S.A., GEO's LPM(landslide Prevention Measures) program in Hongkong, DPRI' ILC(International Consortium on Landslides) program in Japan, and AGSO(Australian Geological Survey Organization)'s NGVUC program in Australia.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

Extraction of Information on Road Cutting Slope using RC Helicopter Photographic Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 절취사면 정보 추출)

  • 이종출;이영도;김진수;조용재
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.217-222
    • /
    • 2004
  • In this study, cutting slope's digital image has acquired by using video camera attached at RC helicopter. Resulted RMSE from image processing was approximately x-direction 0.27m, y-direction 0.23m and z-direction 0.35m. Application of these methods makes it convenient that acquisition of digital image about before and after the construction work of road cutting slope. Also systematical cutting slope's information acquisition will be possible by cutting slope's quantitative and qualitative analysis.

  • PDF

Design Method for Stability in Cut-Slope under heavy rainfall (집중호우를 고려한 절토사면의 안정성 확보를 위한 설계방안)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.16-26
    • /
    • 2002
  • As the slope designs had simply followed some slope guidelines during 1960's∼1970's, of which the main purpose was to estimate earth work quantities in the feasibility stage, slope failures had been experienced in Korea Highways. Various site investigation methods for highway cut-slopes have been continuously developed, and major cut-slope failures caused by slope instability have rapidly reduced. The failure mode of recent cut-slope failures in highways during typhoon RUSA No.15. featured a debris flow in soil mass activated by flowing water. The study of the surface soil scour and the debris flow caused by heavy rainfall must be done to protect the cut-slope failures in the future

  • PDF

Tensile Strength of Clear Thin Wood Samples in Relation to the Slope of Grain

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2003
  • The mechanical and physical properties of wood are strongly dependent upon the slope of grain. Specially, tensile strength is more severely affected by the slope of grain. Therefore, tension tests were performed on small thin wood samples made from Pinus radiata with varying the slope of grain. Determining the tensile strength for clear thin wood samples the other variabilities associated with material, size, drying, defects, etc were discarded. Slope of grain was measured by the slope of grain indicator and actual slope of grain was also determined by a protractor. Correlation coefficients between machine measured and actual slope of grain for 40 pieces of 2×20 mm, 300 mm long Pinus radiata were 0.84 for wide face measurement. Results also showed that tensile strength and MOE from stress wave tests decreased with increasing the slope of grain. This study did not establish a relationships for tensile strength and MOE from stress wave with slope of grain. However, the trends of MOEs from stress wave test with both slope of grain are agreed well with Hankinson's equation. Predicted tension strength curve by Hankinson's equation was also agreed well with the experimental data over the range from 0 to 13 degrees for slope of grain.

Development of an Automatic Leveling Mechanism and Response Properties for the Slope Tractor (경사지 트랙터의 자동 수평기구부 개발 및 응답 특성에 관한 연구)

  • Lee S. S.;Mun J. H.;Lee K. S.;Park W. Y.;Lee C. H.;Hwang H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.1-7
    • /
    • 2005
  • When a slope tractor works on the slope land, it travels usually along the contour and slope line. In that case, the efficiency of work generally decreases and the safety of the operator caused by the overturn of the tractor should be considered. Maintaining the tractor body being horizontal during the travel is crucial to solve problems. To overcome such a problem, an automatic leveling control system for slope tractor has been developed. The system composed of sensor for measuring rolling and pitching inclination of the slope tractor chassis, controller, hydraulic control system and mechanism. The limit angle of the leveling control was set up to be ${\pm}15^{\circ}C$ for rolling, ${\pm}7^{\circ}C$ for pitching. The proposed control and hydraulic power system was implemented to the prototype slope tractor. This paper shows results about development of the automatic leveling mechanism and response properties for slope tractor.

A Study on the Shoulder Types and Bodice Patterns of Men in their twenties (20대 남성의 어깨부위 형태 및 길원형에 관한 연구)

  • 백경자;이정란
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.3_4
    • /
    • pp.429-440
    • /
    • 2003
  • The purpose of this study is to classify the types of men's shoulders through the criteria which represent the characteristic of men's shoulders. In addition, we introduce new bodice patterns depending on our classification. We have the fo11owing conclusions based on our sample size of 200 men's shoulders: 1. The result of factor analysis indicates that six factors are extracted and they consist of 62.3% of total variance. We then choose three factors as standard items for our classification of the shape of men's shoulders. 2. We divide the shape of shoulders into three categories: bent, slopeness, and thickness. Each category is divided into three subcategories. (a) Bent: If one's shoulders are bent forward or backward, then we call them front or back-bent type. Otherwise, they are called standard-bent type. (b) Slopeness: If one's shoulders have an easy or steep slope, then we call them easy or steep slope type. Or else, they are called standard slope type. (c) Thickness: If one's shoulders are thick or thin, then we call them thick or thin type. Otherwise, we call them standard thick type. 3. According to the frequency based on our data entries of 200 men's shoulders, we introduce five new types of men's shoulders. 76.5% of examined men's shoulders belong to one of these five types: (a) 8.0% of standard slope and back-bent type: (b) 9.5% of easy slope and standard-bent type; (c) 45.5% of standard slope and standard-bent type; (d) 5.5% of steep slope and standard-bent type; (e) 8.0% of standard slope and back-bent type. 4. The suitability of new basic bodice patterns based on the types of men's shoulders are demonstrated by the high approval rate of the subjects who participate in testing.

Evaluation and Classification System of Slope using the Slope Code System (SCS) (사면기호시스템을 이용한 사면의 평가 및 분류시스템 제안)

  • Jang, Hyun-Sic;Kim, Ji-Hye;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.383-396
    • /
    • 2014
  • The condition, characteristics, and stability of slopes, as well as the consequences of slope failure, need to be understood for the proper stabilization of slopes and preclusion of potential disasters arising from slope failure. Here, a slope code system (SCS) that succinctly and accurately reflects the various conditions of a slope is proposed. The SCS represents the condition, characteristics, and geotechnical stability of slopes, as well as the consequences of slope failure, and the method is quickly and easily applied to a given slope. The SCS comprises five elements: 1) the slope material; 2) the genetic origin (rock type) and geological structure of the slope; 3) the geotechnical stability of the slope; 4) the probability of failure and remedial works made upon the slope; and 5) the consequences of failure. A letter code is selected from each element, and the result of the evaluation and classification of the slope is given as a five-letter code. Because the condition, characteristics, and geotechnical stability of a slope, as well as the consequences of slope failure, are provided by the SCS, this system will provide an effective mechanism for the maintenance and management of slopes, and will also allow more informed decision-making for determining which slopes should be prioritized for remedial measures.