• 제목/요약/키워드: S-phase fraction

검색결과 355건 처리시간 0.023초

Characterization of a New Anti-dementia β-secretase Inhibitory Peptide from Arctoscopus japonicus

  • Park, Seul Bit Na;Kim, Sung Rae;Byun, Hee-Guk
    • 한국키틴키토산학회지
    • /
    • 제23권4호
    • /
    • pp.220-227
    • /
    • 2018
  • Amyloid plaque is a product of aggregation of ${\beta}$-amyloid peptide ($A{\beta}$) and is an important factor in the pathogenesis of Alzheimer's Disease (AD). $A{\beta}$ is a major component of amyloid plaque and vascular deposits in the AD brain. The enzyme ${\beta}$-secretase is required for the production of $A{\beta}$; thus, prevention of the formation of $A{\beta}$ through the inhibition of ${\beta}$-secretase is a major focus in the study of the treatment of AD. In this study, we investigated ${\beta}$-secretase inhibitory activity of an Arctoscopus japonicus peptide. An Alcalase hydrolysate had the highest ${\beta}$-secretase inhibitory activity. A ${\beta}$-secretase inhibitory activity peptide was separated using ion exchange column chromatography (carboxy-methyl: CM, quaternary methyl ammonium: QMA) and reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column. The $IC_{50}$ value of the purified peptide was $248.2{\pm}1.73{\mu}g/mL$. The ${\beta}$-secretase inhibitory peptide was identified as a six amino acid residue of Gly-Pro-Val-Gly-Ala-Pro (MW: 497.27 Da). In cell viability experiments, the final purified fraction, the carboxy-methyl ion exchange column fraction (CM-F1) showed no significant cytotoxic effect in SH-SY5Y cells at concentrations below $100{\mu}g/mL$ in 24 h. The results of this study suggest that peptides separated from Arctoscopus japonicus may be beneficial as ${\beta}$-secretase inhibitor compounds in functional foods.

소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상 (Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation)

  • 김광훈;전준협;서남혁;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

SEN6 마그네슘합금의 미세조직과 인장 특성에 미치는 압출비와 압출 온도의 영향 (Effects of Extrusion Ratio and Extrusion Temperature on Microstructure and Tensile Properties of SEN6 Magnesium Alloy)

  • 김현지;이지윤;진상철;박성혁
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.178-184
    • /
    • 2024
  • In this study, we investigated the effects of extrusion ratio and extrusion temperature on the microstructure and tensile properties of extruded Mg-6Al-0.3Mn-0.3Ca-0.2Y (SEN6) alloy. As the extrusion ratio and temperature increase, dynamic recrystallization during extrusion is promoted, leading to the formation of a fully recrystallized microstructure with increased grain size. Additionally, the increases in extrusion ratio and temperature lead to texture strengthening, exhibiting a higher maximum texture intensity. The extruded materials contain three types of secondary phases, i.e., Al8Mn4Y, Al2Y, and Al2Ca, with irregular or polygonal shapes. The quantity, size, distribution, and area fraction of the second-phase particles are nearly identical between the two materials. Despite its larger grain size, the tensile yield strength of the material extruded at 450 ℃ and an extrusion ratio of 25 (450-25) is higher than that of the material extruded at 325 ℃ and an extrusion ratio of 10 (325-10), which is mainly attributed to the stronger texture hardening effect of the former. The ultimate tensile strength is similar in the two materials, owing to the higher work hardening rate in the 325-10 extrudate. Despite differences in grain size and recrystallization fraction, numerous twins are formed throughout the specimen during tensile deformation in both materials; consequently, the two materials exhibit nearly the same tensile elongation.

Ti-6Al-4V 합금의 고온성형 시 미세조직 예측에 관한 연구 (Prediction of microstructure during high temperature forming of Ti-6Al-4V alloy)

  • 이유환;신태진;황상무;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.57-60
    • /
    • 2003
  • The purpose of this study is to investigate the high temperature deformation behavior of Ti-6Al-4V alloy and to predict the final microstructure under given forming conditions. Equiaxed and widmanstatten of Ti-6Al-4V alloys were prepared as initial microstructure and the compression tests were performed to obtain the flow curves at high temperatures (700∼1100$^{\circ}C$) and various strain rates (10$\^$-4/∼10$^2$/s). Form the results of compression test various parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural parameters such as the grain size and the volume fraction of second phase.

  • PDF

An Analytical Method for Low-Thrust and High-Thrust Orbital Transfers

  • Park, Sang-Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.47-47
    • /
    • 2003
  • Analytical formulae are presented to approximate the evolution of the semi major axis, the maneuver time, and the final mass fraction for low thrust orbital transfers with circular initial orbit, circular target orbit, and constant thrust directed either always along or always opposite the velocity vector. For comparison, the associated results for high-thrust transfers, i.e. the two-impulse Hohmann transfer, are summarized. All results are implemented in a computer code designed to analyze planar planetary and interplanetary space missions. This implementation yields fast and reasonably accurate approximations to trajectory performance boundaries. Consequently, the approach can provide trajectory analysis for each spacecraft configuration during the conceptual space mission design phase. As an example, a mission from Low-Earth Orbit (LEO) to Jupiter's moon Europa is analyzed.

  • PDF

선화제펌프 입구에서 캐비테이션 발생 가능성 및 위험성 평가 (The Possibility and Risk of Generation of Cavitation at the inlet of the Turbopump)

  • 김철웅;문인상;V.A.베르샤드시키
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.279-282
    • /
    • 2006
  • Upon a turbopump's running, cavitation may occur at the inlet of the LOx pump by pressure drop and heat transfer along the LOx feeding line. Since the cavitation can cause serious damage to the pump or to stop running, the absence of the cavitation at the inlet of a turbopump should be confirmed before the using the turbopump. In the present study, the calculation of the volume fraction of LOx gas phase at the inlet of the pump are performed with different temperatures of LOx in the tank, pressure drops and heat transfers along the feeding line. This calculation method can be applied to define the limits of thermal and hydraulic characteristics during the design of a LOx feeding system.

  • PDF

나노구조 용사코팅층의 형성에 관한 기초적 연구 (Fundamental Study on the Formation of Nanostructured Coating Layer)

  • 김영식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.90-95
    • /
    • 2005
  • The wire-arc process is a low-cost thermal spray method simply utilizes electrical energy to melt the feedstock wire. It is more userful for field applications, especially to coat large surface area. In this paper, a special Fe-based alloy coatings by using the wire-arc process were developed. Nanoscale composite coatings were achieved either during spraying or through a post heat treatment. As-sprayed Fe-based alloy coatings had been an amorphous matrix structure, after heating to $700^{\circ}C$ for 10 minutes a solid state transformation occurred in the some fraction of amorphous matrix which resulted in the formation of nanostructured recrystallized phase. Scanning electron microscopy (SEM) and field emotional scanning electron microscope(FE-SEM) were applied to analyze the microstructure of the coatings. Additionally hardness and bend resistance of the Fe-based alloy coatings were examined, and these results were compared with those of partially stabilized zirconia(PSZ) coatings by using the plasma spray process.

  • PDF

Ti-6Al-4V 합금의 고온성형시 미세조직 예측에 관한 연구 (Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy)

  • 이유환;신태진;황상무;박노광;심인옥;이종수
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.290-295
    • /
    • 2003
  • High temperature deformation behavior and prediction of final microstructure after forming of Ti-6Al-4V alloy were investigated in this study. Equiaxed and Widmanstatten microstructures of Ti-6Al-4V alloys were prepared as initial microstructures and compression tests were performed to obtain the flow curves at high temperatures (700∼110$0^{\circ}C$) and various strain rates (10$^{-4}$ ∼10$^2$/s). From the results of compression test, strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equation. To predict the final microstructure after farming, finite element analysis was performed considering the microstructural parameters such as grain size and volume fraction of second phase.

저탄소 HSLA강의 천이 온도 미치는 미세 조직의 영향 (Effects of microstructure on impact transition temperature of low carbon HSLA steels)

  • 강주석;이창우;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2008
  • Effects of microstructure on the toughness of low carbon HSLA steels were investigated. Nickel decreased the ferrite-austenite transformation temperature, resulted in increase of the fraction of bainitic ferrite. However, it was decreased with increasing deformation amount at austenite region. Since fine austenite grains formed by dynamic recrystallization under large strain transformed to acicular ferrite or granular bainite rather than bainitic ferrite. The effective grain size, thus, was decreased by deformation and it resulted in lower ductile-brittle transition temperature (DBTT). The bainitic ferrite was thought to inhibit the fracture crack initiation and to delay the crack propagation by its high dislocation density and hard interlath $2^{nd}$ phase constituents, respectively. Thus, DBTT was also decreased by Ni addition in low carbon HSLA steels.

  • PDF

Mn-Al-M(M=Cu, Fe) 합금계의 결정구조 및 자기적 성질 (Crystal structures and magnetic properties of Mn-Al-M (M=Cu, Fe) alloys)

  • 최원규;고관영;윤석길
    • 한국재료학회지
    • /
    • 제5권1호
    • /
    • pp.22-35
    • /
    • 1995
  • 본 연구는 Mn-Al 합금계에서 $\tau$상의 분율이 가장 높은 기준 조성을 결정하고 이 기준 조성중 Mn 원자의 일부를 Cu와 Fe 원자로 치환하였을 때 $\tau$상의 안정성과 자기적 성질의 변화를 조사하엿다. Mn-Al 합금계에서 $\tau$상의 분률과 자기적 특성이 가장 높은 조성은 $Mn_{0.56}Al_{0.44}$이었다. $Mn_{0.56-X}M_{X}Al_{0.44}$ 합금계의 결정구조는 M=Cu의 경우, 노냉시편과 소둔시편은 x $\leq$ 0.08 범위에서 $\tau$상과 $\beta$-Mn상이 나타났고, 0.10 $\leq x \leq$ 0.12 범위에서는 $\tau$상과 $\kappa$상이 나타났으며, 0.15 $\leq$ 0.20 범위에서는 $\kappa$상만이 존재하였다. 급속응고시편은 x=0.04에서 $\varepsilon$상과 $\tau$상이 공존하였고, x=0.06 및 x=0.08에서는 $\kappa$상과 $\tau$상이 공존하였으며 x=0.12와 x=0.20에서는 $\kappa$ 상만이 존재하였다. M=Fe의 경우, 노냉시편은 x < 0.08 범위에서 $\tau$상, $\beta$-Mn상 및 $\gamma_{2}$상이 나타났고, x > 0.10 범위에서는 $\kappa$상과 $\beta$-Mn$상이 나타났다. 급속응고시편은 x $\leq$ 범위에서는 $\varepsilon$상과 $\gamma_{2}$상이 나타났지만, 미량의 $\tau$상과 $\kappa$상도 존재함을 알 수 있었다. X=0.12와 x=0.20에서는 $\kappa$상만이 존재하엿다. $Mn_{0.56}Al_{0.44}$ 합금에서 노냉시편과 소둔시편의 포화자화값은 40-45(emu/g)이었으며 curie 온도는 약 650K였다. 급속응고 시편의 포화자화값은 약 50-52(emu/g), Curie 온도는 약 644K엿다. 소둔시편 및 급냉리본 모두 큰 잔류자화/포화자화 비(~0.7)를 나타냈으며, 특히 급냉리본의 경우 77K에서 큰 잔류자화값(~48emu/g)을 보여주었다. $Mn_{0.56-X}M_{X}Al_{0.44}$ 합금계의 자기장에 따른 자화값의 변화는 강자성이 형태를 보여주었고 자화값은 강자성과 $\tau$상과 $\kappa$상의 분율에 따라 결정되며 M=Cu일때, 최대자발자화값은 x=0.15에서 약 64.5(emu/g)이었다. M=Fe일 때 자화값은 x=0.15에서 최대자발자화값($\sigma_{0.0}$=66.4emu/g)이 나타났으며 $\tau$상 영역에서의 값보다 높았다. Curie 온도는 M=Cu, Fe에 관계없이 x가 증가함에 따라 감소하였다.

  • PDF