• Title/Summary/Keyword: S-doping

Search Result 692, Processing Time 0.022 seconds

Simultaneous Liquid Chromatography Tandem Mass Spectrometric Determination of 35 Prohibited Substances in Equine Plasma for Doping Control

  • Kwak, Young Beom;Yu, Jundong;Yoo, Hye Hyun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.158-165
    • /
    • 2022
  • Many therapeutic class drugs such as beta-blocker, corticosteroids, NSAIDs, etc are prohibited substances in the horse racing industry. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology makes it possible to isolate drugs from interference, enables various drug analyses in complex biological samples due to its sensitive sensitivity, and has been successfully applied to doping control. In this paper, we describe a rapid and sensitive method based on solid-phase extraction (SPE) using solid phase cartridge and LC-MS/MS to screen for different class's 35 drug targets in equine plasma. Plasma samples were pretreated by SPE with the NEXUS cartridge consisted non-polar carbon resin and minimum buffer solvent. Chromatographic separation of the analytes was performed on ACQUITY HSS C18 column (2.1 × 150 mm, 1.8 ㎛). The elution gradient was conducted with 5 mM ammonium formate (pH 3.0) in distilled water and 0.1% formic acid in acetonitrile at a flow rate of 0.25 mL/min. The selected reaction monitoring (SRM) mode was used for drug screening with multiple transitions in the positive ionization mode. The specificity, limit of detection, recovery, and stability was evaluated for validation. The method was found to be sensitive and reproducible for drug screening. The method was applied to plasma sample analysis for the proficiency test from the Association of Racing Chemist.

CHARACTERISTICS OF THE HETEROEPITAXIAL Si1-xGex FILMS GROWN BY RTCVD METHOD

  • Chung, W.J.;Kwon, Y.K.;Bae, Y.H.;Kim, K.I.;Kang, B.K.;Sohn, B.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.84-89
    • /
    • 1995
  • The growth and the film characteristics of heteroepitaxial $Si_{1-x}Ge_x$ films growth by the Rapid Thermal Chemical Vapor Deposition(RTCVD)method are described. For the growth of $Si_{1-x}Ge_x$ heteroepitaxial layers, $SiH_4/GeH_4/H_2$gas mixtures are used. The growth conditions are varied to investigate their effects on the Si/Ge composition ratios, the interface abruptness and crystalline properties. The Si/Ge composition ratios are analyzed with the RBS and the SIMS techniques, and the interface abruptness are deduced from these data. The crystalline properties are analyzed from TEM pictures. The experimental data shows that the crystalline perfection is excellent at the growth temperature of as low as $650^{\circ}C$, and the composition ratios change linearly with $SiH_4/GeT_$$ gas mixing ratios in our experimental ranges. Boron doping experiments are also performed using 200 ppm $B_2H_6$ source gas. The doping profiles are measured with SIMS technique. The SIMS data shows that the doping abruptness can be controlled within about 200$\AA$/decade.

  • PDF

Effects of the Doping Concentration of the Floating Gate on the Erase Characteristics of the Flash EEPROM's (Flash EEPROM에서 부유게이트의 도핑 농도가 소거 특성에 미치는 영향)

  • Lee, Jae-Ho;Shin, Bong-Jo;Park, Keun-Hyung;Lee, Jae-Bong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.56-62
    • /
    • 1999
  • All the cells on the whole memory array or a block of the memory array in the Flash EEPROM's are erased at the same time using Fowler-Nordheim (FN) tunneling. some of the cels are often overerased since the tunneling is not a self-limited process. In this paper, the optimum doping concentration of the floating gate solve the overerase problem has been studied. For these studies, N-type MOSFETs and MOS capacitors with various doping concentrations of the gate polysilicon have been fabricated and their electrical characteristics have been measured and analyzed. As the results of the experiment, it has been found that the overerase problem can be prevented if the doping concentration of the floating gate is low enough (i.e. below $1.3{\times}10^{18}/cm^3$). It is because the potential difference between the floating gate and the source is lowered due to the formation of the depletion layer in the floating gate and thus the erasing operation stops by itself after most of the electrons stored in the floating gate are extracted. On the other hand, the uniformity of the Vt and the gm has been significantly poor if the coping concentration of the floating, gate is too much lowered (i.e. below $1.3{\times}10^{17}/cm^3$), which is believed to be due to nonuniform loss of the dopants from the nonuniform segregation in the floating gate. Consequently, the optimum doping concentration of the floating gate to suppress the overerase problem and get the uniform Vt and has been found to range from $1.3{\times}10^{17}/cm^3$ to $1.3{\times}10^{18}/cm^3$ in the Flash EEPROM.

  • PDF

Performance of Carbon Cathode and Anode Electrodes Functionalized by N and O Doping Treatments for Charge-discharge of Vanadium Redox Flow Battery (탄소전극의 질소 및 산소 도핑에 따른 바나듐 레독스-흐름전지 양극 및 음극에서의 촉매화학적 특성 연구)

  • Lim, Hyebin;Kim, Jiyeon;Yi, Jung S.;Lee, Doohwan
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.308-313
    • /
    • 2017
  • In this study, we investigated the electrocatalytic effects of the N and O co-doping of Graphite Felt (GF) electrode for the vanadium redox flow battery (VRFB) at the cathode and the anode reaction, respectively. The electrodes were prepared by chemical vapor deposition (CVD) with $NH_3-O_2$ at 773 K, and its effects were compared with an electrode prepared by an O doping treatment. The surface morphology and chemical composition of the electrodes were characterized by scanning electron microscopy (SEM) and photoelectron spectroscopy (XPS). The electrocatalytic properties of these electrodes were characterized in a VRFB single cell comparing the efficiencies and performance of the electrodes at the cathode, anode, and single cell level. The results exhibited about 2% higher voltage and energy efficiencies on the N-O-GF than the O-GF electrode. It was found that the N and O co-doping was particularly effective in the enhancement of the reduction-oxidation reaction at the anode.

Optical Properties of $Sb_2S_3$ and Ag Doped $Sb_2S_3$ Thin Films ($Sb_2S_3$ 박막과 Ag 도핑한 $Sb_2S_3$ 박막의 광학적인 특성)

  • Kim, Jong-Ki;Park, Jung-Il;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1959-1961
    • /
    • 1999
  • We prepared the $Ag[100\AA])/Sb_2S_3[3000\AA]$ films using the thermal evaporator. The films were exposed by the blue-pass filtered mercury lamp and the polarized He-Ne laser. We have investigated the dependence of the induced optical energy with Ag-doping and have observed the transmittance variation near the optical absorption edge with the light source. It was shown that the energy gap of this thin film was largely changed by exposing He-Ne laser, the light source of the near energy gap of this thin film. It is because of the structural change from Ag-doping. It is investigated that the dissolution, the diffusion, and the field effect of the Ag thin film generate the Ag spatial distribution.

  • PDF

A study on the n-CdS/p-InP solar cells (n-CdS/p-InP 태양전지에 관한 연구)

  • 송복식;최영복;한성준;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.406-412
    • /
    • 1995
  • A n-CdS thin films were evaporated by thermal evaporation method and their structure, optical transmission spectra and electrical characteristics were investigated. The photovoltaic characteristics of solar cells which were fabricated in optimum conditions measured. The evaporated CdS thin films showed in hexagonal structure and above 80% of optical transmission spectra regardless of impurity doping. The high quality thin films could be obtained at 150.deg. C temperature of substrate, which is useful for solar cell window layer with low resistivity of 6*10$\^$-2/(.ohm.-cm) by In doping We measured the electrical and optical characteristics of the n-CdS/p-InP heterojunction solar cells. The most efficient photovoltaic characteristics of heterojunction solar cells had the open circuit voltage of 0.66V, short circuit current density of 13.85mA/cm$\^$2/, fill factor of 0.576 and conversion efficiency of 8.78% under 60mW/cm$\^$2/ illumination.

  • PDF

Effect of Dopping Conditions on a-Se Thin-Films : Microstructural and I-V Study (비정질 박막에 대한 도핑 조건의 영향 및 미세구조와 I-V 연구)

  • Park, S.K.;Park, J.K.;Kang, S.S.;Kong, H.K.;Kim, J.S.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.492-496
    • /
    • 2001
  • Due to their better photosensitivity in X-ray, the amorphous selenium based photoreceptor is widely used on the X-ray conversion materials. It was possible to control the charge carrier transport of amorphous selenium by suitably alloying a-Se with other elements(e,g. As, Cl). In this paper, We investigated dopants(As, Cl) composition rate to improve dark resistivity and transport properties of charge carrier in amorphous selenium using by direct X-ray conversion material. Alloying a-Se with As inhibits the recrystallization of a-Se but introduces undesirable deep hole traps. then doping with Cl(in the ppm range) compensates for the deep hole traps. We investigated their composition rate in various doping conditions and then obtained optimum dopant composition rate. The result was Se-As 0.3%-c] 30 ppm and X-ray Sensitivity was 0.57 pC/$pixel{\cdot}mR$ at $137{\mu}m{\times}137{\mu}m$ Pixel area.

  • PDF

Preparation of $N-TiO_2$ Photocatalysts and Activity Test ($N-TiO_2$ 광촉매의 제조와 광촉매 활성 검토)

  • Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.466-472
    • /
    • 2012
  • Visible-light-responding photocatalysts, $N-TiO_2$, were prepared by nitrogen doping onto $TiO_2$. The crystalline structure and morphology, doping state of the prepared photocatalysts were characterized by XRD, FE-SEM, and XPS. The activity of the prepared photocatalysts was examined by the decomposition of methyleneblue. The prepared catalysts were anatase type and the crystallinity was increased with pH. The particle sizes of the prepared catalysts were 5.42, 5.99, 7.58 nm at pH 2.2, 4.7, 9.0, respectively. The particle sizes of the prepared catalysts were slightly increased with pH. The activity of the photocatalysts was directly proportional to the crystallinity of the catalysts. $N-TiO_2$ prepared by nitrogen doping onto $TiO_2$ showed activity under visible light. The doped nitrogen was located not in the lattice but on the surface.