• Title/Summary/Keyword: S-band Radar

Search Result 189, Processing Time 0.021 seconds

Maritime Atmospheric Boundary Layer Observed By L-band Doppler radar (도플러 레이더를 이용한 해안지역의 대기경계층 분석 연구)

  • Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.977-984
    • /
    • 2000
  • Atmospheric boundary layer over equatorial maritime continent was analyzed with Doppler radar. An L-band (1357.5 MHz) boundary layer radar (BLR) has been in continuous successful operation in Selpong, Indonesia(6.45, 106.7E), since November 1992. The performance of the BLR with respect to the observation height range and the wind measurement reliability has been examined on the basis of simultaneous meteorological observations. In the dry season (10-12 October 1993), we have found two types of strong echo structures appearing systematically in the equatorial planetary boundary layer with diurnal variations on clear days. The first type is the striking appearance of a strong echo layer ascending from below 300 m (in the morning) to above 3-5 km (in the afternoon), which is identified with a diurnal variation of the top of the mixing planetary boundary layer. As expected, it is higher in the Indonesian equatorial region than in midlatitudes. Another type is a layered echo appearing at 2-3 km heights from nighttime to morning, which seem to be coincident with humidity gaps. In the rainy season (20-21 February 1994), the height of the atmospheric mining was lower than that in the dry season.

  • PDF

Waveguide Slot Array Antenna for Heliborne MTD Radar (헬리콥터 탑재 MTD 레이다용 도파관 슬롯배열 안테나)

  • Kim Dong-Seok;Han In-Hee;Gwak Young-Gil;Shin Keun-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.139-142
    • /
    • 2004
  • X-band Waveguide slot way antenna is developed for heliborne MTD radar applications. The antenna is composed of multi-layer waveguide structures. Each of them has it's own functions, such as, radiation, power/phase distribution, coupling, etc. Broad-wall offset slots are used for radiators, inclined slots on broad-wall for power distribution to radiating(branch) waveguide, some kind of coaxial probe structures for in-phase coupling and H-plane T-junction power dividers. Antenna is realized by precision machining and careful assembly. It is tested and measured by 3m${\times}$l.7m planar near-field probe, which is set-up in MTG. Far-field calculations have good agreement in tolerable bounds. Special but necessary process such as brazing, will increase the accuracy and performance. Results show promising possibilities of future applications for real systems.

  • PDF

Design and Implementation of the new structural VCO with improved tuning range (Tuning range 개선을 위한 새로운 구조의 VCO 설계 및 제작)

  • Kang, Dong-Jin;Kim, Dong-Ok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.293-297
    • /
    • 2009
  • In this thesis, design of a VCO(Voltage controlled Oscillator) with a novel tuning mechanism is presented for the Radar system. This circuit, the 9.5 GHz oscillator is designed and implemented by restructuring microstrip resonator to raise Q value and to require a wide frequency tuning range. This product is fabricated on 2.6 Teflon substrate and device is NE722S01. In this paper, The new microstrip resonator VCO is proposed to achieve the characteristic of a wide frequency tuning range. This microstrip resonator VCO shows the phase noise characteristic of -108.3 dBc/Hz at 1 MHz offset from the fundamental frequency, the output power of 5.7 dBm and the second harmonic suppression of -38 dBc for the VCO are obtained. The manufacture VCO shows a frequency tuning range of 193.8 MHz. The proposed micro trip resonator VCO can be used for X-band Radar System with required tuning range.

  • PDF

Design of Nx1 Modified Rectangular Loop Array Antenna for Radar Application (레이더용 Nxl 변형 사각 루프 배열 안테나 설계)

  • Jang, Jae-Su;Ko, Jin-Hyun;Ha, Jae-Kwon;Kim, Tae-Hyun;Park, Dong-Chul;Kim, Chan-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.144-151
    • /
    • 2006
  • A rectangular loop antenna for S-band radar is proposed. The proposed loop antenna is the modified type of folded monopole antenna. The feeding line is coplanar stripline with $180^{\circ}$ phase difference for operating in odd mode. The proposed antenna showed return loss of -15.57dB at the center frequency and bandwidth of about 790MHz (> 25%) under the condition of VSWR < 2. The gains of single, 1x2, and 1x4 array loop antennas are 4.3, 7.0, and 10.2dBi, respectively.

Technical Trends on Low-Altitude Drone Detection Technology for Countering Illegal Drones (불법 드론 대응을 위한 저고도 드론 탐지 기술 동향)

  • Lee, I.J.;Choi, S.H.;Joo, I.O.;Jeon, J.W.;Cha, J.H.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.10-20
    • /
    • 2022
  • A drone without attaching guns or bombs can be a dangerous weapon, since its motor speed is greater than 3000 rpm, which is similar to that of a mower powered by a LiPo battery. The anti-drone system is the only means of detecting and neutralizing drone attacks. Many defense companies around the world provide solutions using various types of equipment (for example, radar, cameras, jamming guns, and net guns). ETRI has also developed a Low-Altitude Drone Detection (LADD) system consisting of Ku-band radar and an Electro-Optical/Infra-Red (EO/IR) camera. In this paper, we summarize recent technical advances in anti-drone systems around the world and introduce the features and describe the performance of the LADD system.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

Design and Fabrication of S-Band GaN SSPA for a Radar (레이더용 S대역 GaN 반도체 전력증폭기 설계 및 제작)

  • Lee, Jeong-Won;Lim, Jae-Hwan;Kang, Myoung-Il;Han, Jae-Seob;Kim, Jong-Pil;Lee, Sue-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1139-1147
    • /
    • 2011
  • In this paper, a design and fabrication of GaN power amplifier for the S-band frequency (400 MHz bandwidth) are presented. A combining path using ${\lambda}$/4 transmission line is implemented for GaN pallet amp. Both the combiner with suspended-type transmission structure for low-loss and the suspended stripline coupler with aperture coupling for auto gain control are realized for achieving high-power high-efficiency amplifier. Proposed power amplifier demonstrated a 5 kW peak output power, 27.8 % efficiency, 67 dB gain without ALC and a 4 kW peak output power, 25.5 % efficiency, 0.1 dB droop at 200 usec pulse width and 10 % duty with ALC.

The Potential of Satellite SAR Imagery for Mapping of Flood Inundation

  • Lee, Kyu-Sung;Hong, Chang-Hee;Kim, Yoon-Hyoung
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.128-133
    • /
    • 1998
  • To assess the flood damages and to provide necessary information for preventing future catastrophe, it is necessary to appraise the inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in southern part of Korea. JERS L-band SAR data obtained during the summer of 1997 were used to delineate the inundated areas. In addition, Landsat TM data were also used for analyzing the land cover condition before the flooding. Once the two data sets were co-registered, each data was separately classified. The water surface areas extracted from the SAR data and the land cover map generated using the TM data were overlaid to determine the flood inundated areas. Although manual interpretation of water surfaces from the SAR image seems rather simple, the computer classification of water body requires clear understanding of radar backscattering behavior on the earth's surfaces. It was found that some surface features, such as rice fields, runaway, and tidal flat, have very similar radar backscatter to water surface. Even though satellite SAR data have a great advantage over optical remote sensor data for obtaining imagery on time and would provide valuable information to analyze flood, it should be cautious to separate the exact areas of flood inundation from the similar features.

  • PDF

A Progress Status of Remote Sensing in the Korean Meteorological Society (한국기상학회 원격탐사 분야 학술 발전 현황)

  • Myoung-Hwan Ahn;Jhoon Kim;GyuWon Lee;Sang-Woo Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.197-222
    • /
    • 2023
  • Remote sensing becomes a new and core framework for the atmospheric sciences and closely related areas concerning with the ever-changing global environmental status. However, remote sensing in the Korea Meteorological Society is relatively new, where the first relevant paper is appeared in 1983, as well as is an area with relatively limited number of research groups. Here, we review and summarize some of the key progress in this area within Korea Meteorological Society focusing on the areas of satellite, radar, and ground based remote sensing such as lidar, spectrometer and sun photometer. Overall, the area is shown to have the most significant progress occur along with the acquisition of the key infra structures such as the COMS (Communication, Ocean and Meteorological Satellite) and S-band radar system led by Korea Meteorological Administration in early 2000. After that, the area has quickly developed into a status playing important roles to lead and support the overall activities in the atmospheric measurements. It is expected that the importance and role of the remote sensing will increase in the coming years.

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.