DOI QR코드

DOI QR Code

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method

크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정

  • Kim, Kwang-Ho (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Min-seong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Lee, Gyu-Won (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University) ;
  • Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 김광호 (부경대학교 환경대기과학과) ;
  • 김민성 (부경대학교 환경대기과학과) ;
  • 이규원 (경북대학교 천문대기과학과) ;
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과)
  • Received : 2012.11.10
  • Accepted : 2013.01.09
  • Published : 2013.02.28

Abstract

Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

정량적인 강수량 추정은 기상학 수문학적 연구와 활용에 가장 중요한 요소 중 하나이다. 본 논문에서는 정량적 강수량 추정을 위하여 레이더 강우의 지리통계적 오차 구조 함수를 공동크리깅에 적용하여 레이더 강우강도를 조정하였다. 레이더 강우강도의 오차는 공동크리깅의 주변수로서 지상 우량계와 레이더의 강우강도의 차이로 산출되었다. 지상 우량계 강우장은 공동크리깅의 이차변수로서 정규크리깅에 의해 산출되었다. 레이더 강우강도의 오차 분포는 실험적 베리오그램으로 결정된 이론적 베리오그램을 공동크리깅에 적용하여 생성되었고, 레이더 강우강도 조정을 위하여 레이더 강우강도의 오차 분포를 레이더 강우장에 적용하였다. 본 연구의 검증을 위하여 국지적으로 호우가 발생하였던 2009년 7월 6일에서 7일까지의 강우 사례를 선정하였다. 오차가 조정된 1시간 레이더 누적강우량과 지상 우량계 누적강우량의 상관성은 조정 전에 비하여 0.55에서 0.84로 향상되었고, 평균제곱근오차는 7.45에서 3.93 mm로 조정되었다.

Keywords

References

  1. Chang, K.H, 2007, Study on the weather radar application (I). National Institute of Meteorological Research, 7 p.(in Korean)
  2. Chumchean, S., Seed, A., and Sharma, A., 2006, Correcting real-time radar rainfall bias using a Kalman filtering approach. Journal of Hydrology, 317, 123-137. https://doi.org/10.1016/j.jhydrol.2005.05.013
  3. Ji, Y.S., Oh, S.H., Suh, B.S., Lee, D.K., 2011, Restoration, prediction and noise analysis of geomagnetic time-series data. The Korean Earth Sciences Society, 32, 613-628.(in Korean) https://doi.org/10.5467/JKESS.2011.32.6.613
  4. Jo, C.H., 2009, Research for the meteorological observation technology and its application. National Institute of Meteorological Research, 74 p. (in Korean)
  5. Jung, S.H. and Lee, G.W., 2010, Statistical characteristics of atmospheric conditions related to radar beam propagation using radiosonde data in 2005-2006. The Korean Earth Sciences Society, 31, 584-599. (in Korean) https://doi.org/10.5467/JKESS.2010.31.6.584
  6. Kim, B.S., Hong, J.B., Kim, H.S., and Choi, K.H., 2007, Combining radar and rain gauge rainfall estimates for flood forecasting using conditional merging method. Korean Society of Civil Engineers, 27, 255-265. (in Korean)
  7. Kim, K.J., Choi, J.H., and Yoo, C.S., 2008, Synthesis of radar measurements and ground measurements using the Successive Correction Method (SCM). Korea Water Resources Association, 41, 681-692. (in Korean) https://doi.org/10.3741/JKWRA.2008.41.7.681
  8. Korea Meteorological Administration, 2009, Annual climatological report. 13 p. (in Korean)
  9. Krajewski, W.F., Lakshmi, V., Georgakakos, K.P., and Jain, S.C., 1991, A monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resources Research, 27, 119-128. https://doi.org/10.1029/90WR01977
  10. Marshal, J.S. and Palmer, W.M.K., 1948, The distribution of raindrops with size. Journal of of Meteorology, 5, 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  11. Noh, H.S., Kang, N.R., Kim, B.S., and Kim, H.S., 2012, Flood simulation using Vflo and radar rainfall adjustment data by statistical objective analysis. Journal of the Korean Wetlands Society, 14, 243-254. (in Korean)
  12. Ochou, A.D., Zahiri, E.-P., Bamba, B., and Koffi, M., 2011, Understanding the variability of Z-R Relationships caused by natural variations in raindrop size distributions (DSD): Implication of drop size and number. Atmospheric and Climate Sciences, 1, 147-164. https://doi.org/10.4236/acs.2011.13017
  13. Park, N.W., 2011, Time-series mapping and uncertainty modeling of environmental variables: A case study of PM10 concentration mapping. Journal of the Korean Earth Sciences Society, 32, 249-264. (in Korean) https://doi.org/10.5467/JKESS.2011.32.3.249
  14. Salek, M., 2010, Operational application of the precipitation estimate by radar and raingauges using local bias correction and regression kriging. ERAD 2010.
  15. Wang, J., Fisher, B.L., and Wolff, D.B., 2008, Estimating rain rates from Tipping-Bucket rain gauge measurements. Journal of Atmospheric and Oceanic Technology, 25, 43-56. https://doi.org/10.1175/2007JTECHA895.1
  16. Ware, E.C., 2005, Corrections to radar-estimated precipitation using observed raingauge data. MSD. dissertation, Cornell University, Newyork, USA, 96 p.
  17. Wilson, J.W. and Brandes, E.A., 1979, Radar measurement of rainfall-a summary. Bulletin of the American Meteorological Society, 60, 1048-1058. https://doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
  18. Yoo, C.S., Park, C.S., and Yoon, J.S., 2011, Decision of G/R ratio for the correction of mean-field bias of radar rainfall and linear regression problem. Korean Society of Civil Engineers. 31, 393-403. (in Korean)

Cited by

  1. Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method vol.35, pp.2, 2014, https://doi.org/10.5467/JKESS.2014.35.2.115
  2. Evaluation of Rainfall Intermittency on the Simple Kriging vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.383
  3. A Study on the Improvement in Local Gauge Correction Method vol.24, pp.4, 2015, https://doi.org/10.5322/JESI.2015.24.4.525
  4. Assessment of Design Snow Depth for Green House Using Frequency Analysis vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.247
  5. On quality of radar rainfall with respect to temporal and spatial resolution for application to urban areas vol.24, pp.1, 2017, https://doi.org/10.1002/met.1601
  6. Quantitative Assessment on the Radar Rainfall of KICT X-band Daul-polarization Radar vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.329
  7. Verification of Initial Field of Very Short-Term Radar Rainfall Forecasts using Advanced System: A Case Study of Typhoon CHABA in 2016 vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.57