• 제목/요약/키워드: S-Curve Error Motion Profile

검색결과 4건 처리시간 0.02초

포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법 (Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System)

  • 엄명환;송신우;박일우
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

잔류진동 저감을 위한 비대칭 S-curve 프로파일의 영점 배치법 (Zero Placement of the Asymmetric S-curve Profile to Minimize the Residual Vibration)

  • 하창완;류근호;김경수;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.308-313
    • /
    • 2012
  • Robust tuning rules of the motion profile are proposed to minimize the residual vibration. For asymmetric S-curve profile, tuning rules are analytically formulated using Laplace-domain approach. When the system modeling is known exactly, by placing a single zero of the motion profile on the pole of the system, the residual vibration can be perfectly eliminated under undamped system. However, if there are some amounts of the modeling errors, the residual vibration significantly increases. To track this issue, the robust tuning rules against modeling error are discussed. One of the proposed robust tuning rules is placing the multiple zeros of the motion profile on the pole of the system, and the other is placing the zeros of the motion profile around the pole of the system. Thanks to the proposed robust tuning rules, motion profile becomes more robust to modeling errors while minimizing the residual vibration. By simulation, the effectiveness of the proposed robust tuning rules is verified.

고 정밀 캠 측정 장치 개발 및 오차분석에 관한 연구 (A Study on Development of the High Precision Cam Measurement Apparatus and Analysis of Cam Manufacturing Error)

  • 노영화;이춘만
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.112-119
    • /
    • 2009
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. However, complex engineering tasks are required in a design and manufacturing of cams. And also, the manufacturing of general cam is demanded high costs. For the designing of cam, it must be decided that what kind of motion has to be transmitted to follower before selecting the curve of cam and designing profile of cam. However, even though the exact profile of cam is designed at the progress of design, if it doesn't have precision at the manufacturing progress, it's impossible to get expected result. We will develop cam simulation apparatus for measuring cam curve and get profile data before analyzing an error through comparison with design data of cam.

Emotion Graph Models for Bipedal Walk Cycle Animation

  • Rahman, Ayub bin Abdul;Aziz, Normaziah Abdul;Hamzah, Syarqawi
    • International Journal of Advanced Culture Technology
    • /
    • 제4권1호
    • /
    • pp.19-27
    • /
    • 2016
  • Technology in the animation industry has evolved significantly over the past decade. The tools to create animation are becoming more intuitive to use. Animators now spend more time on the artistic quality of their work than wasting time figuring out how to use the software that they rely on. However, one particular tool that is still unintuitive for animators is the motion graph editor. A motion graph editor is a tool to manipulate the interpolation of the movements generated by the software. Although the motion graph editor contains a lot of options to control the outcome of the animation, the emotional rhythm of the movements desired by the animator still depends on the animator's skill, which requires a very steep learning curve. More often than not, animators had to resort to trial and error methods to achieve good results. This inevitably leads to slow productivity, susceptible to mistakes, and waste of resources. This research will study the connection between the motion graph profile and the emotions they portray in movements. The findings will hopefully be able to provide animators reference materials to achieve the emotional animation they need with less effort.