• Title/Summary/Keyword: S waves

Search Result 1,967, Processing Time 0.032 seconds

Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation (쇄파의 초기단계 생성조건과 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

A Study of the Ionization Characteristics of Xenon Gas by Shock Compression (충격 압축에 의한 제논 가스의 이온화 특성 연구)

  • Lee, D.S.;Shin, J.R.;Choi, J.Y.;Choi, Y.S.;Kim, H.W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper, the ionization characteristics of noble gases are studied numerically behind strong shock waves. As a first step, the equilibrium ionization mechanism of noble gases is modeled in wide ranges of temperature and pressure. As a next step the equilibrium ionization model is coupled with fluid dynamic equations to analyze the local thermodynamic equilibrium(LTE) ionization process at high temperature and pressure conditions behind the strong imploding shock waves. The ionization characteristics of xenon gas is studied in a wide range of test conditions with thermal radiation effects. Hence, the results give optimal conditions of maximum ionization and radiation behind the imploding shock waves.

Experimental Analysis on the Motion Response of a Container Ship in Irregular Head Waves (콘테이너선의 불규칙파 중 운동응답에 대한 실험적 고찰)

  • S.Y.,Hong;S.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • This paper presents the results of seakeeping tests in a container ship model in irregular head waves. A time domain signal generating procedure is devised so that the wave maker behaves in accordance with the specified wave spectrum. The surface elevation of generated waves is measured and analysed to render the recorded wave spectrum for comparison with the specified one. Correction is made to the time domain signal until the differences between the two spectra become negligible. The motion responses and vertical acceleration of the self-propelled ship model are measured and analysed by both the spectral and the double amplitude methods. The two methods give nearly same statistical values. Finally the recorded spectra are compared with those calculated from the frequency domain motion analysis to show the credibility of the experimental results.

  • PDF

On the Signal Analysis of Two Waterfall Sounds in Australia's Broken Falls

  • Tian, Zhixing;Bae, MyungJin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.287-293
    • /
    • 2020
  • More and more people are paying attention to the psychological pleasure and relaxation that sound hearing brings. In most cases, humans seem to have a special preference for natural sounds. Natural sounds are mainly white noise and pink noise such as wind, rain, waves, waterfall sounds, etc. All of these are often considered to be beneficial to human health, but in reality the same category of natural sounds is no different. It will be very different due to space, time and other factors. Each sound can be unique, so people's hearing experience is also different. This paper quantitatively analyzes the spectrum and brain waves to analyze the feeling of hearing the natural Broken Falls sound. In particular, we aim to objectively analyze the objective feeling of Broken Falls sound falling on the human auditory system through sound spectrum and brain waves.

Evaluation of Chloride Penetration Resistance of Frost Concrete according to the water-cement ratio, during the Cold Wave (한파로 인한 초기 동해를 입은 콘크리트의 염해 저항성 평가)

  • Park, Dong-Cheon;Lee, Jun-Hae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.165-166
    • /
    • 2020
  • The climate on the Korean Peninsula has been warmed recently, abnormal weather conditions such as heat waves, cold waves, and tropical nights have been detected frequently. Precisely, the number of days with cold waves in the winter has increased, and rapid changes of temperature in the morning and afternoon have occurred frequently in the 2000s. Due to the previous phenomenons, this research is focused on evaluating the concrete's Chloride Penetration Resistance and Durability, and the difference of the resistance according to the W/C.

  • PDF

A FINITE-ELEMENT METHOD FOR FREE-SURFACE FLOW PROBLEMS

  • Bai, Kwang-June;Kim, Jang-Whan
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-27
    • /
    • 1995
  • In this paper a finite element method for free-surface problems is described. the method is based on two different forms of Hamilton's principle. To test the present computational method two specific wave problems are investigated; the dispersion relations and the nonlinear effect for the well-known solitary waves are treated. The convergence test shows that the present scheme is more efficient than other existing methods, e.g. perturbation scheme.

SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.305-320
    • /
    • 2015
  • The present paper is devoted to study SH-wave propagation in heterogeneous layer laying over an inhomogeneous isotropic elastic half-space. The dispersion relation for propagation of said waves is derived with Green's function method and Fourier transform. As a special case when the upper layer and lower half-space are homogeneous, our derived equation is in agreement with the general equation of Love wave. Numerically, it is observed that the velocity of SH-wave increases with the increase of inhomogeneity parameter.

A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA (기상청 현업 예보 바람자료를 이용한 동해안 동계 파랑 예측 재현도 연구)

  • Do, Kideok;Kim, Jinah
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.5
    • /
    • pp.223-233
    • /
    • 2018
  • The predictability of winter storm waves using KMA's operational wind forecasts has been studied to predict wind waves and swells in the East coast of Korea using SWAN. The nested model were employed along the East coast of Korea to simulate the wave transformation in the coastal area and wave dissipation term of whitecapping is optimized to improve swell prediction accuracy. In this study, KMA's operational meteorological models (RDAPS and LDAPS) are used as input wind fields. In order to evaluate model accuracy, we also simulate wind waves and swells using ECMWF reanalysis and KIOST WRF wind and they are compared with the KMA's operational wave model and the wave measurement data on the offshore and onshore stations. As a result, it has the lowest RMSE and the highest correlation coefficient in the onshore when the input wind fields are KMA's operational meteorological forecasts. In the offshore, all of the simulate results shows good agreements with similar error statistics. It means that it is very feasible to use SWAN model with the modified whitecapping factor and KMA's operational meteorological forecasts for predicting the wind waves and swells in the East coast of Korea.

Performance Evaluation of JADE-MUSIC Estimation for Indoor Environment

  • Satayarak, Peangduen;Rawiwan, Panarat;Chamchoy, Monchai;Supanakoon, Pichaya;Tangtisanon, Prakit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1654-1659
    • /
    • 2003
  • In this paper, the performance evaluation of the JADE-MUSIC estimation based on the indoor channel is presented. By means of the JADE-MUSIC algorithm, DOA and time delay can be obtained simultaneously. In the JADE-MUSIC method, the channel impulse response is first estimated from the received samples and then this impulse response is employed to estimate DOAs and time delays of multipath waves. Moreover, according to the JADE-MUSIC characteristics, it can work in cases when the number of impinging waves is more than the number of antenna elements, unlike the traditional parametric subspace-based method, such a case is not true. Therefore, we employ the JADE-MUSIC algorithm applying for the real indoor environment where is rich of the multipath propagation waves and can imply that the number of waves is very possibly higher than that of the array element. The experiment is carried out in our laboratory considered to be the real indoor environment. The performance of the JADE-MUSIC algorithm is evaluated in terms of the comparison between the simulation and experiment results by using the simulated channel model and the real indoor channel model, respectively. It is clear that the joint angle and delay estimation using the simulated channel model are in good agreement with the estimation using the real indoor channel model. Therefore, we can say that the JADE-MUSIC algorithm accomplishes the high performance to jointly estimate the angle and delay of the arriving signal for the indoor environment.

  • PDF

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.