• Title/Summary/Keyword: S pre-annealing

Search Result 24, Processing Time 0.024 seconds

Annealing Effect on the Mechanical Properties of Hot-Rolled Fe55Co17.5Ni10Cr12.5Mo5 High-Entropy Alloy (열간압연 된 Fe55Co17.5Ni10Cr12.5Mo5 고엔트로피합금의 소둔 조건에 따른 기계적 특성 변화)

  • Park, H.D.;Bae, D.H.;Won, J.W.;Moon, J.;Kim, H.S.;Seol, J.B.;Sung, H.;Bae, J.W.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Although the mechanical properties of high-entropy alloys depend on the annealing conditions, limited works were established to investigate the annealing effect on the mechanical properties of Mo-added high-entropy alloys. Therefore, in the present work, the annealing effects on the microstructural evolution and mechanical properties of Mo-added high-entropy alloy were investigated. As a result, incomplete recrystallization from the limited annealing time not only suppresses deformation-induced phase transformation during cryogenic tensile test but also induces a deformation instability that results into the ductility reduction compare with the fully recrystallized sample. This result represents adjustment of annealing time is useful to control both transformation-induce plasticity and deformation instability of high-entropy alloys, and this can be applied to control the mechanical properties of metallic alloys by combining pre-straining and subsequent annealing.

Diffusion Coefficient of Iron in ZnSe Polycrystals from Metal Phase for mid-IR Gain Medium Application

  • Jeong, Junwoo;Myoung, NoSoung
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.371-375
    • /
    • 2014
  • Diffusion coefficient of Fe in polycrystalline host ZnSe as a mid-IR gain medium has been measured in the annealing temperature ranges of 850 to $950^{\circ}C$. The synthesis of the samples was carried out in quartz ampoule in which the Fe thin film deposited by physical vapor evaporation method on the ZnSe. One can realize that the diffusion coefficient strongly depends on the surface active surfactants through the cleaning process and the substrate temperature during the thin film deposition leading to $2.04{\times}10^{-9}cm^2/s$ for $Fe^{2+}:ZnSe$. The Annealing temperature dependence of the Fe ions diffusion in ZnSe was used to evaluate the activation energy, $E_a$=1.39 eV for diffusion and the pre-exponential factor $D_0$ of $13.5cm^2/s$.

Effect of Strain Rate and Pre-strain on Tensile Properties of Heat-treated A5082 and A6060 Aluminium Wrought Alloys (열처리한 A5082와 A6060합금의 인장특성에 미치는 변형율속도 및 예비변형율의 영향)

  • Lee, Choongdo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.161-172
    • /
    • 2020
  • The tensile property of A5082 and A6060 aluminium wrought alloys was investigated, in terms of the strain rate sensitivity on alloy conditions by heat treatment and bake hardenability on pre-strain prior to strain ageing. The tensile test was carried out in a range of strain rate of 4.17 × 10-5 s-1 ~ 4.17 × 10-5 s-1 in room temperature and the nominal range of pre-strain was 3.0 ~ 10.5%. The tensile deformation of A5082 alloys is characterized as typical case of dynamic strain ageing with negative strain rate sensitivity for all conditions, and the tensile strength indicates a similar level regardless of alloy conditions, except only in full annealed condition. The stress-relief annealing on A6060 alloys can induce practical decrease in strength level of over approximately 100 MPa without any ductility loss, compared to as-rolled condition, while a full annealed and aged condition leads remarkable strengthening effect with the decrease of tensile elongation. Additionally, the bake hardenability of A5082 alloy by strain ageing indicates a negative dependence upon the increase of pre-strain, while A6060 alloy exhibits a positive sign even in low level relatively compared with conventional SPCC.

A Graph Matching Algorithm for Circuit Partitioning and Placement in Rectilinear Region and Nonplanar Surface (직선으로 둘러싸인 영역과 비평면적 표면 상에서의 회로 분할과 배치를 위한 그래프 매칭 알고리즘)

  • Park, In-Cheol;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.529-532
    • /
    • 1988
  • This paper proposes a graph matching algorithm based on simulated annealing, which assures the globally optimal solution for circuit partitioning for the placement in the rectilinear region occurring as a result of the pre-placement of some macro cells, or onto the nonplanar surface in some military or space applications. The circuit graph ($G_{C}$) denoting the circuit topology is formed by a hierarchical bottom-up clustering of cells, while another graph called region graph ($G_{R}$) represents the geometry of a planar rectilinear region or a nonplanar surface for circuit placement. Finding the optimal many-to-one vertex mapping function from $G_{C}$ to $G_{R}$, such that the total mismatch cost between two graphs is minimal, is a combinatorial optimization problem which was solved in this work for various examples using simulated annealing.

  • PDF

EFFECTS OF Si, Ge PRE-IMPLANT INDUCED DEFECTS ON ELECTRICAL PROPERTIES OF P+-N JUNCTIONS DURING RAPID THERMAL ANNEALING

  • Kim. K.I.;Kwon, Y.K.;Cho, W.J.;Kuwano, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.90-94
    • /
    • 1995
  • Defects introduced by Si, Ge preamorphization and their effects on the dopant diffusion and electrical characteristics. Good crystalline quality are obtained after the annealing of Ge ion double implanted samples. The defect clusters under the a/c interface are expected to extend up to the deep in the Si ion implanted samples. The dislocation loops near the junction absorb the interstitial Si atoms resolving from the defect cluster and result in the prevention of enhanced boron diffusion near the tail region of boron profile and show good reverse current charactristics.

  • PDF

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF

A Study on the Mis-align during Fabricated Poly-Si TFT on Polymer substrate (고분자 기판위에 Poly-Si TFT 제작시 Mis-align방지를 위한 연구)

  • Kang, Su-Hee;Hwang, Jung-Yeon;Seo, Dae-Shik;Kim, Young-Hun;Moon, Dae-Kyu;Han, Jung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.173-176
    • /
    • 2005
  • Teijin사의 HT100-B60의 폴리카보네이트(polycarbonate) $100{\mu}m$, I-Component사의 PES(polyethersulfone) $200{\mu}m$, Ferrania사의 PAR(polyacrylate) $100{\mu}m$$200{\mu}m$를 사용하였다 열팽창계수의 차이로 인해 공정상 기판의 가열과 냉각시 열응력이 발생하여 기판의 크랙발생의 원인이 된다. 이를 최소화하기 위해 모든 공정이 시작하기 전에 pre-annealing을 통해 plastic 기판의 시간별 공정을 실시하였다. plastic film의 annealing time은 0h, 12h, 24, 40h, 50h, 60h, 70h, 80h으로 사간을 달리하여 오븐 안의 진공상태를 조성하여 실험하였다. Thermal evaporator로 Al을 약 170nm 증착하였으며 (주)동진 세미캠의 DTFR-1011s DR LCD용 감광액을 Spin Coating Spread(500rpm/6sec), Spin(3000rpm/20sec)으로 coating하였다.

  • PDF

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

A data mining approach to compressive strength of CFRP-confined concrete cylinders

  • Mousavi, S.M.;Alavi, A.H.;Gandomi, A.H.;Esmaeili, M. Arab;Gandomi, M.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.759-783
    • /
    • 2010
  • In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete strength and ultimate confinement pressure are included in the second set. The models are developed based on the experimental results obtained from the literature. To verify the applicability of the proposed models, they are employed to estimate the compressive strength of parts of test results that were not included in the modeling process. A sensitivity analysis is carried out to determine the contributions of the parameters affecting the compressive strength. For more verification, a parametric study is carried out and the trends of the results are confirmed via some previous studies. The GP/SA and MEP models are able to predict the ultimate compressive strength with an acceptable level of accuracy. The proposed models perform superior than several CFRP confinement models found in the literature. The derived models are particularly valuable for pre-design purposes.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF