• Title/Summary/Keyword: S cerevisiae

Search Result 926, Processing Time 0.026 seconds

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Inference of Aspergillus fumigatus Pathways by Computational Genome Analysis: Tricarboxylic Acid Cycle (TCA) and Glyoxylate Shunt

  • Do, Jin-Hwan;Anderson, Michael-J.;Denning, David-W.;Erich, Bornberg-Bauer
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.74-80
    • /
    • 2004
  • Aspergillus fumigatus is one of the most common fungi in the human environment, both in-doors and out-doors. It is the main causative agent of invasive aspergillosis, a life-threatening mycosis among immunocompromised patients. The genome has been sequenced by an international consortium, including the Wellcome Trust Sanger Institute (U.K.) and The Institute for Genomic Research (TIGR, U.S.A.), and a ten times whole genome shotgun sequence assembly has been made publicly available. In this study, we identified tricarboxylic acid (TCA) cycle enzymes of A. fumigatus by comparative analysis with four other fungal species. The open reading frames showed high amino acid sequence similarity with the other fungal citric acid enzymes and well-conserved functional domains. All genes present in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa were also found in A. fumigatus. In addition, we identified four A. fumigatus genes coding for enzymes in the glyoxylate shunt, which may be required for fungal virulence. The architecture of multi-gene encoded enzymes, such as isocitrate dehydrogenase, 2-ketoglutarate, succinyl-CoA synthetase, and succinate dehydrogenase was well conserved in A. fumigatus. Furthermore, our results show that genes of A. fumigatus can be detected reliably using GlimmerM.

대기압 플라즈마 처리에 따른 Yeast의 반응에 대한 생물 물리적 고찰

  • Yu, Yeong-Hyo;Lee, Jin-Yeong;Hong, Yeong-Jun;Eom, Hwan-Seop;Park, Gyeong-Sun;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.482-482
    • /
    • 2012
  • 대기압 플라즈마 소스는 미생물을 살균하는 효과를 가지고 있으나 그 메커니즘에 대해서는 여전히 많은 연구가 필요한 실정이다. 우리는 본 연구에서 메커니즘 규명을 위한 시작단계로 플라즈마에 대한 미생물의 반응을 생물학적 및 물리적 분석을 통해 보고자 하였다. 연구에 사용한 미생물은 yeast인 Saccharomyces cerevisiae 이며 Ar Gas 플라즈마를 사용하였다. Yeast에 일정한 시간 동안 플라즈마를 조사한 후 세포의 생존, 모양 변화 관찰 및 DNA에 대한 영향이 분석되었고 r-FIB 장비를 이용하여 세포표면의 이차전자 방출계수를 측정하였다. 플라즈마 조사 시간에 따라 Yeast active cell의 수가 감소하며, water에 넣고 조사할때에는 YPD media에 넣고 조사한 것에 비해 급격히 감소함을 볼 수 있다. 셀의 모양 관찰 결과도 water에 넣고 조사할 때, YPD media보다 더 찌그러듬을 볼 수 있다. 플라즈마 조사량에 따라서 Water의 PH 값은 YPD에 비해 급격히 낮아짐을 보인다. pH의 값을 달리하고 SNP와 H2O2가 첨가된 water에 Yeast를 배양시킬 때, pH의 값이 낮아질수록 yeast의 생존도 감소함을 볼 수 있다. 그리고 DNA gel electrophoresis를 통해 플라즈마 처리를 하게되면 Yeast의 DNA 양이 감소하는 것을 관찰할 수 있다. 또한 플라즈마 처리를 3분 하였을 때의 Yeast 세포막으로부터 방출되는 이차전자방출계수는 다른 처리시간에 대한 값에 비하여 확연히 증가하는 것을 볼 수 있다. 이들 사실로부터 플라즈마의 효과로 인해 외부의 전자를 흡수 및 차단할 수 있는 기능을 갖고 있는 Yeast 세포막의 구조가 변형되어 손상되었음을 의미한다.

  • PDF

Evaluation of Ciliate Euplotes sp. as a Live Food for Marine Fish Larvae (해산 자치어의 먹이생물로써 섬모충 Euplotes sp.의 평가)

  • Yoo Jin Hyung;Hur Sung Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.542-544
    • /
    • 2002
  • This study was carried out to evaluate the ciliates Euplotes sp. as a live food for marine fish larvae. The ciliates and the rotifers Brachionus plicatilis, which were cultured with the baker's yeast Saccharomyces cerevisiae and the $\omega$-yeast emulsified with cuttle fish liver oil, were supplied to the larvae of flounder Paralichthys olivaceus and grouper Epinephelus akaara. Considering the size difference between the ciliates 68 $\cdot$ 7 $\mu$n and the rotifers 160 $\cdot$ 20 $\mu$n, the rotifers and ciliates were supplied to the larvae tank with the density of 2 inds./mL and 20 inds./mL, respectively. The survival rate and growth in length of the flounder larvae fed on rotifer were significantly higher than those on Euplotes sp.. In grouper larvae which have a small mouth diameter, even the survival rate of the larvae fed on the ciliates was better than that on the rotifers, it was very low less than $20\%$. Therefore, Euplotes sp. seem to be incongruent as a live food for marine fish larvae.

Yeast Microflora of Some Aquatic Habitats in El-Minia Governorate, Egypt

  • Haridy, Mamdouh S.A.
    • The Korean Journal of Mycology
    • /
    • v.21 no.2
    • /
    • pp.127-132
    • /
    • 1993
  • 269 yeast strains were isolated from water samples collected from different sites in Minia governorate. These included 126 strains from fresh water, 108 strains from sewage and 35 strains from wastewater from sugar-cane factory. On the basis of 23 different physiological and morphological merkmals, the isolated strains were assigned to 16 species belonging to 11 genera. Total yeast cell counts as well as spectra of yeast species were highly variable in tested water. Total yeast cell counts ranged between $3.0{\times}10^3/l\;and\;1.8{\times}10^6/l$ for fresh water, $3.0{\times}10^4/l\;and\;3.0{\times}10^7/l$ for sewage and $1.5{\times}10^6/l\;and\;2.6{\times}10^7/l$ for wastewater from sugarcane factory. Debaryomyces hansenii, Rhodotorula mucilaginosa and Torulaspora delbrueckii were the dominant species in fresh water, whereas Debaryomyces hansenii, Thrichosporon beigelii, Rhodoforula mucilaginosa and Kluyveromyces marxianus were the dominant species in sewage and Saccharomyces cerevisiae, Kluyveromyces marxianus and Trichosporon beigelii were the dominant species in wastewater from sugar-cane factory. Yeast human pathogens, Trichosporon beigelii, Rhodotorula mucilaginosa and Candida albicans were encountered in water samples indicating that water in El-Minia governorate is also polluted by some pathogenic yeasts.

  • PDF

Identification of Streptomyces sp. KH29, Which Produces an Antibiotic Substance Processing an Inhibitory Activity Against Multidrug-Resistant Acinetobacter baumannii

  • Lee, Keyong-Ho;Kim, Gye-Woong;Rhee, Ki-Hyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1672-1676
    • /
    • 2010
  • The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at $27^{\circ}C$. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrug-resistant Acinetobacter baumannii. Furthermore, cyclo(L-Trp-L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus.

Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System

  • Yoon, Shin Ah;Jung, Jihye;Park, Seongsoon;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.218-224
    • /
    • 2013
  • The aldo-keto reductases catalyze reduction reactions using various aliphatic and aromatic aldehydes/ketones. Most reductases require NADPH exclusively as their cofactors. However, NADPH is much more expensive and unstable than NADH. In this study, we attempted to change the five amino acid residues that interact with the 2'-phosphate group of the adenosine ribose of NADPH. These residues were selected based on a docking model of the YOL151W reductase and were substituted with other amino acids to develop NADH-utilizing enzymes. Ten mutants were constructed by site-directed mutagenesis and expressed in Escherichia coli. Among them, four mutants showed higher reductase activities than wild-type when using the NADH cofactor. Analysis of the kinetic parameters for the wild type and mutants indicated that the $k_{cat}/K_{m}$ value of the Asn9Glu mutant toward NADH increased 3-fold. A docking model was used to show that the carboxyl group of Glu 9 of the mutant formed an additional hydrogen bond with the 2'-hydroxyl group of adenosine ribose. The Asn9Glu mutant was able to produce (R)-ethyl-4-chloro-3-hydroxyl butanoate rapidly when using the NADH regeneration system.

Packagng of Fresh Curled Lettuce and Cucumber by Using Low Density Polyethylene Films Impregnated with Antimicrobial Agents (항균소재를 함유시킨 저밀도폴리에틸렌 필름에 의한 상추와 오이의 포장)

  • 이동선;안덕순;황용일;조성환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.675-681
    • /
    • 1998
  • Low density polyethlene(LDPE0 films of 50${\mu}{\textrm}{m}$ thickness were fabricated with addition of antimicrobial agents of Rheum palmatum extract, Coptis chinensis extract, sorbic acid and Ag-substitude inorganic zirconium matrix in 1% concentration. The films were compared in physical properties, tested in antimicrobial activity against some selected microorganisms on the agar plate medium and then applied for packaging fresh curled lettuce and cucumber to preserve their qualities. The films with Rheum palmatum extract, Coptis chinensis extract, and Ag-substituted inorganic zirconium matrix did not show any antimicrobial activity on the disk test against Escherichia coli, Staphylococcus aureus, Leuconostoc mesenteroides, Saccharomyces cerevisiae, Aspergillus niger, Aspergillus oryzae, Penicilluium chrysogenum, while film with sorbic acid did against E. coli, S. aureus and L. mesenteroides. The added antimicrobial agents changed the color and light transmittance of the films, but did not affect their mechanical tensile strength, heat shrinkage and wettability. For the packaged curled lettuce and cucumber stored at 5$^{\circ}C$ and 1$0^{\circ}C$, all the LDPE films impregnated with antimicrobial agents showed the reduced growth of total aerobic bacteria in the vegetables compared with control film without any additive until it reached the level around 108/g. They did not give any negative effect on other quality attributes during storage.

  • PDF

Development of Thermostable Fusant, CHY1612 for Lignocellulosic Simultaneous Saccharification and Fermentation (섬유질계 동시당화발효를 위한 내열성 융합 효모, Kluyveromyces marxianus CHY1612의 개발)

  • Kang, Hyun-Woo;Kim, Yule;Park, Ju-Yong;Min, Ji-Ho;Choi, Gi-Wook
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • To develop thermostable ethanol fermentative yeast strain for lignocellulosic simultaneous saccharification and fermentation, high ethanol producing yeast, Saccharomyces cerevisiae CHY1012 and thermostable yeast, Kluyveromyces marxianus CHY1703 were fused by protoplast fusion. The thermostable fusant, CHY1612 was identified as a Kluyveromyces marxianus by phenotypic and physiological characteristics, as well as molecular analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1 + 2 regions. For lignocellulosic ethanol production, AFEX pretreated barley straw at $150^{\circ}C$ for 90 min was used in a simultaneous saccharification and fermentation (SSF) process using thermotolerant CHY1612. The SSF from 16% pretreated barley straw at $43^{\circ}C$ gave a saccharification ratio of 90.5%, a final ethanol concentration of 38.5 g/L, and a theoretical yield of 91.2%. These results show that K. marxianus CHY1612 has potential for lignocellulosic ethanol production through simultaneous saccharification and fermentation with further development of process.

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.