Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09059

Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System  

Yoon, Shin Ah (Division of Biotechnology, The Catholic University of Korea)
Jung, Jihye (Division of Biotechnology, The Catholic University of Korea)
Park, Seongsoon (Department of Chemistry, Center for NanoBio Applied Technology, Institute of Basic Sciences, Sungshin Women's University)
Kim, Hyung Kwoun (Division of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.2, 2013 , pp. 218-224 More about this Journal
Abstract
The aldo-keto reductases catalyze reduction reactions using various aliphatic and aromatic aldehydes/ketones. Most reductases require NADPH exclusively as their cofactors. However, NADPH is much more expensive and unstable than NADH. In this study, we attempted to change the five amino acid residues that interact with the 2'-phosphate group of the adenosine ribose of NADPH. These residues were selected based on a docking model of the YOL151W reductase and were substituted with other amino acids to develop NADH-utilizing enzymes. Ten mutants were constructed by site-directed mutagenesis and expressed in Escherichia coli. Among them, four mutants showed higher reductase activities than wild-type when using the NADH cofactor. Analysis of the kinetic parameters for the wild type and mutants indicated that the $k_{cat}/K_{m}$ value of the Asn9Glu mutant toward NADH increased 3-fold. A docking model was used to show that the carboxyl group of Glu 9 of the mutant formed an additional hydrogen bond with the 2'-hydroxyl group of adenosine ribose. The Asn9Glu mutant was able to produce (R)-ethyl-4-chloro-3-hydroxyl butanoate rapidly when using the NADH regeneration system.
Keywords
Reductase; protein engineering; cofactor preference; NADH; chiral compound;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bubner, P., M. Klimacek, and B. Nidetzky. 2008. Structureguided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). FEBS Lett. 582: 233-237   DOI   ScienceOn
2 Campbell, E., I. R. Wheeldon, and S. Banta. 2010. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 107: 763-774.   DOI   ScienceOn
3 Ferranri, R., E. Merli, G. Cicchitelli, D. Mele, A. Fucili, and C. Ceconi. 2004. Therapeutic effects of L-carnitine and propionyl- L-carnitine on cardiovascular diseases: A review. Ann. NY Acad. Sci. 1033: 79-91.   DOI   ScienceOn
4 Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1- propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193.   DOI   ScienceOn
5 Colucci, S., G. Mori, S. Vaira, G. Brunetti, G. Greco, L. Mancini, et al. 2005. L-Carnitine and isovaleryl L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif. Tissue Int. 76: 458-465.   DOI
6 Ellis, E. M. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131.   DOI
7 Goldberg, K., K. Schroer, S. Lütz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols-part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-248.   DOI   ScienceOn
8 Jung, J., H. J. Park, K. N. Uhm, D. Kim, and H. K. Kim. 2010, Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: Enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849.   DOI   ScienceOn
9 Jung, J., S. Park, and H. K. Kim. 2012. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B Enzym. 84: 15-21.   DOI   ScienceOn
10 Moore, J. C., D. J. Pollard, B. Kosjek, and P. N. Devine. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40: 1412-1419.   DOI   ScienceOn
11 Kamitori, S., A. Iguchi, A. Ohtaki, M. Yamada, and K. Kita. 2005. X-Ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reduction of carbonyl compounds. J. Mol. Biol. 352: 551-558.   DOI   ScienceOn
12 Katzberg, M., N. Skorupa-Parachin, M. F. Gorwa-Grauslund, and M. Beratau. 2010. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ- diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 11: 1735-1758.   DOI   ScienceOn
13 Monti, D., G. Ottolina, G. Carrea, and S. Riva. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140.   DOI   ScienceOn
14 Ni, Y., C. X. Li, H. M. Ma, J. Zhang, and J. H. Xu. 2011. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl. Microbiol. Biotechnol. 89: 1111-1118.   DOI
15 Park, H. J., J. Jung, H. J. Choi, K. N. Uhm, and H. K. Kim. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306.   DOI   ScienceOn
16 Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444.   DOI   ScienceOn
17 Yamamoto, H., A. Matsuyama, and Y. Kabayashi. 2002. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66: 925-927.   DOI   ScienceOn
18 Wang, J., P. Cieplak, and P. A. Kollman. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21: 1049-1074.   DOI   ScienceOn
19 Weckbecker, A., H. Gröger, and W. Hummel. 2010. Regeneration of nicotinamide coenzymes: Principles and applications for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 120: 195-242.
20 Wang, J., R. M. Wolf, J. W. Caldwell. P. A. Kollman, and D. A. Case. 2004. Development and testing of general amber force field. J. Comput. Chem. 25: 1157-1174.   DOI   ScienceOn
21 Ye, Q., P. Ouyang, and H. Ying. 2011. A review - biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: Recent advances and future perspectives. Appl. Microbiol. Biotechnol. 89: 513-522.   DOI   ScienceOn
22 Benvenga, S., A. Amato, M. Calvani, and F. Trimarchi. 2004. Effects of carnitine on thyroid hormone action. Ann. NY Acad. Sci. 1033: 158-167.   DOI   ScienceOn
23 Banta, B., B. A. Swanson, S. Wu, A. Jarnagin, and S. Anderson. 2002. Alteration of the specificity of the cofactorbinding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng. 15: 131-140.   DOI