• Title/Summary/Keyword: Rutile

Search Result 513, Processing Time 0.021 seconds

Studies on Preparation of $TiO_2$Powder with High Purity and Fine Particle -Properies of Powder with Reaction Condition of Hydrolysis(II)- (고순도.미립 $TiO_2$분말 제조에 관한 연구 -가수분해 반응 조건에 따른 분말특성(II)-)

  • Choi, Byung-Hyun;Huh, Hye-Kyung;Lee, Mi-Jai;Kim, Hwan;Kim, Moo-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.938-943
    • /
    • 2000
  • TiCl$_4$, 물 및 1-propanol의 혼합용액으로부터 미립 TiO$_2$분말 제조시, 1-propanol과 물의 부피비, 반응온도, 반응유지시간 및 TiCl$_4$mole 농도에 따른 분말 특성 및 결정상 생성에 대해 조사하였다. 반응온도가 3$0^{\circ}C$ 이상일 때 Ti 수화물의 초기 침전이 생성되었고 반응온도가 TiCl$_4$mole 농도가 증가함에 따라 입자크기는 증가하였고 $600^{\circ}C$ 하소시 1-propanol과 물의 부피비가 2보다 크고 반응온도가 7$0^{\circ}C$보다 낮을 때 주결정상은 anatase였다. 입자크기가 미세하고 입자크기 분포가 좁은 범위를 갖는 조건은 1-propanol과 물의 부피비가 2, 반응온도가 7$0^{\circ}C$, TiCl$_4$mole 농도가 0.2 mole/ι일 때였으며, 결정상의 생성은 1-propanol과 물의 부피비가 2, 반응온도가 3$0^{\circ}C$ 이상일 때 anatase에서 rutile로 전이하는 온도가 높아졌다. 이와 같은 반응인자에 따른 효과는 용매의 유전상수, 티타니아의 용해도, 입자의 표면전위 등의 효과와 관계가 있었다.

  • PDF

Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders

  • Lee, Deuk Yong;Cho, Hun;Kang, Daejun;Kang, Jong-Ho;Lee, Myung-Hyun;Kim, Bae-Yeon;Cho, Nam-Ihn
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area of a $TiO_2$ nanoparticle layer as the electrode and platinum (Pt) as the counter electrode. The $TiO_2$ nanoparticle layers (12 to 22 ${\mu}m$) were screen-printed on fluorine-doped tin oxide glass. Glancing angle X-ray diffraction results indicated that the $TiO_2$ layer is composed of pure anatase with no traces of rutile $TiO_2$. The Pt counter electrode and the ruthenium dye anchored $TiO_2$ electrode were then assembled. The best photovoltaic performance of DSSC, which consists of a $18{\mu}m$ thick $TiO_2$ nanoparticle layer, was observed at a short circuit current density ($J_{sc}$) of $14.68mA{\cdot}cm^{-2}$, an open circuit voltage ($V_{oc}$) of 0.72V, a fill factor (FF) of 63.0%, and an energy conversion efficiency (${\eta}$) of 6.65%. It can be concluded that the electrode thickness is attributed to the energy conversion efficiency of DSSCs.

Synthesis of Nanosized TiO$_2$ Powder by Chemical Vapor Condensation Process(1) (화학기상응축법에 의한 TiO$_2$ 나노분말의 합성 (1))

  • 김신영;유지훈;이재성;김종렬;김병기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.742-750
    • /
    • 1999
  • Nanosized TiO2 powders were synthesized using the chemical vapor conduensation (CVC) process with various precursor feeding rates (0.37 and 0.752 ml/min) and oxygen flow rates(1-2slm) conditions and powder characteristics were investigated in terms of formation of nanosized powder varying with the above processing conditions. For this study the main thermodynamic and fluid dynamic factors -supersaturation ratio collision frequency and residence time-were theoretically established and compared to the characteristics of formed TiO2 powder. The loosely combined anatase phase powders (including less than 3%of rutile phase) having 20-30nm crystallite size were obtained at overall conditions. The particle size and th degree of agglomeration for a precursor flow rate of 0.376 ml/min turn out to be smaller than for a flow rate of 0.742ml/min. And the decreasing of particles size and particle size distribution were observed with increasing oxygen flow rate as the residence time and collision frequency were reduced by increasing oxygen flow rate,. It appears that further scrutiny is needed to elucidate the influence of the individual thermodynamic and kinetic parameters mdependently.

  • PDF

Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment (수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성)

  • Seo, Min-Hyun;Oh, Sang-Jin;Kida, Tetsuya;Shimanoe, Kengo;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

A Preliminary Study on the Solar-Hydrogen System Utilizing Photoanodic $TiO_2$ Semiconductor Electrode ($TiO_2$ 태양광 전극을 이용한 태양-수소 제조시스템 기초연구)

  • Lee, Tai-Kyu;Cho, Suh-Hyun;Jo, Duk-Ki;Chea, Young-Hi
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 1991
  • Electrochemical reaction utilizing the semiconducting photoanodes can be applied to the photoelectrolysis of water to produce hydrogen. In this preliminary experiment, $TiO_2$ photoanodes were prepared by sintering anatase-$TiO_2$ powder at $1,250^{\circ}C$ and thermal oxidizing titanium plate at $850^{\circ}C$ in air and oxygen, respectively. Their surface structures were observed by XRD and optical microscope. I-E characteristics of thermally oxidized $TiO_2$ photoanode were also investigated under illuminated and dark conditions using 1 N and 0.1 N NaOH electrolyte solutions.

  • PDF

Gas Sensing Characteristics of Nano Sized SnO2 Sensors for Various Co and Ni Concentration (Co, Ni 농도 변화에 따른 나노 SnO2 센서의 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.546-549
    • /
    • 2011
  • Nano-sized $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized $SnO_2$ thick film sensors were treated in a $N_2$ atmosphere. The structural properties of the nano $SnO_2$with a rutile structure according to XRD showed a (110) dominant $SnO_2$ peak. The particle size of $SnO_2$:Ni nano powders at Ni 8 wt% was about 45 nm, and the $SnO_2$ particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano $SnO_2$-based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors doped with 8 wt% Ni. The response time of the $SnO_2$:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the $CH_4$ and $CH_3CH_2CH_3$ gases.

Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue

  • Go, Yu-Gyoung;Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.142-150
    • /
    • 2009
  • In this paper, non-treated ACF (Activated Carbon Fiber) /$TiO_2$ and Zn-treated ACF/$TiO_2$ were prepared. The prepared composites were characterized in terms of their structural crystallinity, elemental identification and photocatalytic activity. XRD patterns of the composites showed that the non-treated ACF/$TiO_2$ composite contained only typical single and clear anatase forms while the Zn-treated ACF/$TiO_2$ contained a mixed anatase and rutile phase with a unique ZnO peak. SEM results show that the titanium complex particles are uniformly distributed on and around the fiber and that the titanium complex particles are more regularly distributed on and around the ACF surfaces upon an increase of the $ZnCl_2$ concentration. These EDX spectra show the presence of peaks from the C, O and Ti elements. Moreover, peaks of the Zn element were observed in the Zn-treated ACF/$TiO_2$ composites. The prominent photocatalytic activity of the Zn-treated ACF/$TiO_2$ can be attributed to the three different effects of photo-degradation: doping, absorptivity by an electron transfer, and adsorptivity of porous ACFs between the Zn-$TiO_2$ and Zn-ACF.

Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes

  • Chen, Ming-Liang;Son, Joo-Hee;Park, Chong-Yun;Shin, Yong-Chan;Oh, Hyun-Woo;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.429-433
    • /
    • 2010
  • In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride ($CoCl_2$) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/$TiO_2$ composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/$TiO_2$ composites were characterized by $N_2$ adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was $389\;m^2/g$. From the XRD results, the Co-AC/$TiO_2$ composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/$TiO_2$ composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, $C_{14}H_{14}N_3NaO_3S$) and rhodamine B (Rh.B, $C_{28}H_{31}ClN_2O_3$) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by $TiO_2$. Especially, the Co particles in the Co-AC/$TiO_2$ composites could enhance the photo degradation behaviors of $TiO_2$ under visible light.

Evaluation of OH Radical Generation to Nanotube Morphology of TiO2 Nanotube Plate (TiO2 nanotube plate의 nanotube 형태에 따른 OH radical 생성량 평가)

  • Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • In this study, a TiO2 nanotube was grown on a titanium plate by using anodic oxidation method for the evaluation of TiO2 nanotube morphology. The TiO2 nanotube was grown in an electrolyte containing ethylene glycol, 0.2 wt% of NH4F and 2 vol% of H2O. Applied voltage varied from 30 to 70 V and the morphology of the TiO2 nanotube was observed. After anodization, a TiO2 nanotube plate was immersed in 35℃ ethanol for 24 hours. Anatase and rutile crystal forms of TiO2 nanoutbe were observed after annealing. 4-chrolobenzoic acid, a probe compound for OH radicals, was dissolved in H2O in order to measure the OH radical. Liquid chromatography was used to check the concentration of the 4-chrolobenzoic acid. The OH radical generation by TiO2 nanotube plate was proportionate to the length of the TiO2 nanotube. Furthermore, when the number of TiO2 nanotube plate increased, the OH radical generation increased as well.

Characteristics of Transparent and Conducting Tin Oxide Film (투명전도성 Tin Oxide Film의 특성)

  • Chang Sup Ji;Tak Jin Moon;In Hoon Choi;Dok Yol Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.102-109
    • /
    • 1987
  • Some characteristics of $SnO_2$ film which was deposited on a slide glass substrate, using dibutyl tin diacetate and oxygen, by the chemical vapor deposition were observed. The optimum condition for the preparation of the film was found to be at 420$^{\circ}C$ of substrate temperature for 20 min of deposition. Important optical, electrical, and structural features of the film were examined. It was found that the typical $SnO_2$ film on the untreated substrate was 4000${\AA}$ in thickness, transmitted 90% of the visible liglit, and provided 5800 ohms/${\square}$ of the sheet resistance. It was also found that the surface treatments of the slide glass by acid leaching were beneficial. The film structure was found to be a mixture of polycrystalline tetragonal stannic oxide confirmed by the X-ray diffraction and to be spherical fine grains concluded by the scanning electron microscopy.

  • PDF