• 제목/요약/키워드: Ruthenium complexes

검색결과 44건 처리시간 0.038초

장 파장 대 태양광을 흡수하는 염료감응형태양전지에 대한 염료와 합성 (Synthesis and Photovoltaic Performance of Long Wavelength Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;윤주영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of $TiO_2$ are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

NIR 흡수 염료를 이용한 염료감응형 태양전지 (Synthesis and Photovoltaic Performance of NIR Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;정미란;이민경;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.118.1-118.1
    • /
    • 2011
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of TiO2 are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구 (Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs))

  • 안병관
    • 한국전기전자재료학회논문지
    • /
    • 제24권11호
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

(펜타메틸시클로펜타디에닐) 비스(포스핀)루테늄의 염화물과 수소화물 유도체 (Chloro- and Hydrido Complexes of (Pentamethylcyclopentadienyl) bis(phosphine)ruthenium)

  • 이동환
    • 대한화학회지
    • /
    • 제36권2호
    • /
    • pp.248-254
    • /
    • 1992
  • 에탄올 용매 중에서, 착물 $[({\eta}^5-C_5Me_5)RuCl_2]_2$ (1)에 대하여 과량의 포스핀을 반응시켜 비스(포스핀)루테늄 유도체$({\eta}^5-C_5Me_5)Ru(PR_3)_2Cl(PR_3=PMe_3,\; PMe_2Ph,\;PEt_3,\;PMePh_2$, 1/2DPPE, 1/2DPPB) (2a${\sim}$2f)를 합성하였다. 이 유도체들은 에탄올 용매 중에서 $NaBH_4$와 반응하여 상응하는 황색의 착수소화물 $({\eta}^5-C_5Me_5)Ru(PR_3)_2Hl(PR_3=PMe_3,\;PEt_3,\;PMePh_2$, 1/2 DPPE, 1/2DPPB) (3a${\sim}$3e)을 생성한다. 착염화물 (2a${\sim}$2f)와 착수소화물 (3a∼3e)는 모두 결정으로 얻어졌으며, IR, $^1H-NMR$ 그리고 원소분석으로 동정되었다.

  • PDF

Counter Ion Effect on Photoinduced Electron Transfer Reaction between Ruthenium Complexes

  • Sonoyama, Noriyuki;Kaizu, Youkoh
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.481-486
    • /
    • 1995
  • Quenching experiments by photoinduced electron transfer between a charged donor and a neutral acceptor were carried out in acetonitrile, dichloromethane and mixed solvents of acetonitrile and dichloromethane. Tris(2, 2'-bipyridine) ruthenium(II) ($[Ru(bpy)_3]^{2+}$) which has 2+ charge and dicyanobis (2, 2'-bipyridine) ruthenium(II) ($Ru(bpy)_2(CN)_2$) which has no charge were used as electron donors, and a series of tris(${\beta}$-diketonato) ruthenium (III) was used as acceptor. In dichloromethane, $[Ru(bpy)_3]^{2+}$ and its counter ions ($ClO{_4}^-$) form ion pair. In the estimate of ${\Delta}G$ of electron transfer, the electrostatic potential between counter ions and product ion pair produced by electron transfer must be taken into account. A similar effect of counter ions was found in mixed solvents of 10, 30, 50, 70 and 90% acetonitrile ratio in volume. The effect of counter ion on ${\Delta}G$ became smaller with the increase in acetonitrile ratio. The result in mixed solvents suggests that $[Ru(bpy)_3]^{2+}$ and its counter ions form ion pair even in 90% acetonitrile solution.

  • PDF

SBA-15 실리카에 고정화된 ruthenium 촉매를 사용한 Microwave하에서의 비대칭 수소 전달반응 (Microwave-mediated Asymmetric Hydrogen Transfer by SBA-15-supported Ruthenium Catalyst)

  • 진명종;전인철
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.752-755
    • /
    • 2008
  • 메조포러스 SBA-15 silica와 (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-cyclohaxanediamine 또는 (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-diphenylethylenediamine과의반응을통하여 메조포러스 silica SBA-15-supported TsCHDA와 TsDPEN가 각각 제조되어졌다. SBA-15-supported TsCHDA로부터 얻어진 ruthenium complex들은 microwave하에서의 케톤의 비대칭 수소 전달반응에서 우수한 촉매능과 만족할 만한 거울상 입체선택도를 주었다. 이불균일상 SBA-15-supported ruthenium 촉매는 사용이 용이하게 안정할 뿐 만 아니라, 재사용 할 수 있었다. 비대칭 수소전달반응을 위한 microwave를 사용한 효율적인 공정이 개발되었다.

Multi-Nuclear NMR Investigation of Nickel(II), Palladium(II), Platinum(II) and Ruthenium(II) Complexes of an Asymmetrical Ditertiary Phosphine

  • Raj, Joe Gerald Jesu;Pathak, Devendra Deo;Kapoor, Pramesh N.
    • 대한화학회지
    • /
    • 제57권6호
    • /
    • pp.726-730
    • /
    • 2013
  • Complexes synthesized by reacting alkyl and aryl phosphines with different transition metals are of great interest due to their catalytic properties. Many of the phosphine complexes are soluble in polar solvents as a result they find applications in homogeneous catalysis. In our present work we report, four transition metal complexes of Ni(II), Pd(II), Pt(II) and Ru(II) with an asymmetrical ditertiaryphosphine ligand. The synthesized ligand bears a less electronegative substituent such as methyl group on the aromatic nucleus hence makes it a strong ${\sigma}$-donor to form stable complexes and thus could effectively used in catalytic reactions. The complexes have been completely characterized by elemental analyses, FTIR, $^1HNMR$, $^{31}PNMR$ and FAB Mass Spectrometry methods. Based on the spectroscopic evidences it has been confirmed that Ni(II), Pd(II) and Pt(II) complexes with the ditertiaryphosphine ligand showed cis whereas the Ru(II) complex showed trans geometry in their molecular structure.